
20 Years of leanCoP — An Overview
– Talk Abstract –

Jens Otten

Department of Informatics, University of Oslo, Norway

Abstract
The talk gives a comprehensive overview of the automated theorem prover leanCoP and all its variants
for classical and non-classical �rst-order logics. It includes historical details describing how seven lines
of Prolog code turned into some of the most popular and e�cient connection provers for classical and
non-classical logics. The talk also provides an overview of the non-clausal version nanoCoP and on
other implementations inspired by leanCoP, in particular those integrating Machine Learning.

Keywords
leanCoP, connection calculus, logic, automated reasoning, non-classical logics

leanCoP — How it Started

20 years ago, the paper “leanCoP: Lean Connection-based Theorem Proving” [1] started the
development of a series of compact connection provers for classical and several non-classical
logics. The very �rst version of leanCoP was written a few years earlier, when the author was
asked to take on a lecture of Wolfgang Bibel’s course “Inferenzmethoden” at TU Darmstadt,
because he was out of town. This prover was intended to show the students a compact Prolog
implementation of the (classical) connection calculus [2, 3] which was the topic of the lesson at
that time. Slightly simplifying that code and adding the positive start clause technique resulted
in leanCoP 1.0, whose compact version of the Prolog code is shown in the abstract of the 2003
leanCoP article. With a size of 333 bytes, the core code was smaller than that of the �rst popular
lean prover leanTAP [4], whose compact Prolog code had a size of 360 bytes.
Even though leanCoP 1.0 already outperformed the famous Otter theorem prover [5] on a

small number of problems, it was not until the year 2006 when the development of leanCoP got
a huge boost. The good preliminary results on the problems of the MPTP challenge led to the
integration of further optimizations, e.g. regularity, lemmata, strategy scheduling, de�nitional
clausal form, and a more e�cient representation of the input clauses. But most importantly, it
included restricted backtracking [6], a novel and simple, but powerful strategy to signi�cantly
reduce the amount of backtracking during the proof search. At CASC in 2007, leanCoP 2.0 [7, 6]
had its debut and proved more problems than four other participating systems. It proved four
problems that were not solved by the Vampire prover [8] and was awarded Best Newcomer [9].
The compact version of the leanCoP 2.0 core prover is still only 555 bytes in size.

AReCCa 2023: Automated Reasoning with Connection Calculi, 18 September 2023, Prague, Czech Republic

$ jeotten@i�.uio.no (J. Otten)
� http://jens-otten.de/ (J. Otten)
� 0000-0002-4331-8698 (J. Otten)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR

Workshop
Proceedings

http://ceur-ws.org

ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:jeotten@ifi.uio.no
http://jens-otten.de/
https://orcid.org/0000-0002-4331-8698
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


leanCoP 2.1 returns a readable connection proof, uses a shell script with an improved strategy
scheduling, and directly supports the TPTP input syntax with equality. At CASC in 2008 and
2009, leanCoP is among the top three (original) provers that output a proof in the core FOF
division. At CASC in 2009, leanCoP-SiNE, which integrates the SiNE preprocessor, ends up in
third place in the proof class of the SUMO reasoning prize. At CASC in 2010, leanCoP-Ω, which
integrates the arithmetic Omega test, wins the �rst (linear integer) arithmetic TFA division.

ileanCoP andMleanCoP — Dealing with Non-classical Logics

ileanCoP 1.0 [10] was the �rst version of the connection prover for intuitionistic �rst-order
logic. It is based on leanCoP 1.0 extended by pre�xes and a pre�x uni�cation procedure [11, 12].
ileanCoP 1.2 [7] integrates all the techniques and strategies of leanCoP 2.0. At CASC in 2007,
ileanCoP proved two problems intuitionistically valid that the Vampire prover could not prove
classically valid, even though reasoning in intuitionistic logic is signi�cantly harder.
MleanCoP 1.2 [13] andMleanCoP 1.3 [14] are connection provers for the modal �rst-order

logics D, T, S4 and S5 with constant, cumulative and varying domains. They are based on
leanCoP 2.1 extended by pre�xes and pre�x uni�cation procedures that determine the speci�c
modal logic. Up to the release of nanoCoP-M 2.0 these were the fastest provers for modal logics.

nanoCoP — Non-clausal Reasoning

nanoCoP [15, 16] is a series of compact Prolog implementations of the non-clausal connection
calculus. The non-clausal connection calculus for classical [17, 18] and non-classical logics [19]
generalizes the clausal connection calculus. It uses the original input formula directly, without
translating it into any clausal form. Instead, the structure of the input formula is preserved
throughout the proof search. nanoCoP combines the advantages of more natural sequent and
tableau provers with the systematic and goal-oriented proof search of connection provers.

The nanoCoP 2.0 provers [20] integrate most of the optimization techniques of leanCoP 2.1
and can provide detailed non-clausal connection proofs. nanoCoP-i and nanoCoP-M are now
some of the fastest provers for intuitionistic and modal �rst-order logic, respectively.

Other CoPs — Re-Implementations and Machine Learning

Re-implementations and extensions of leanCoP include lolliCoP (implemented in the linear
logic programming language Lolli) [21], fCoP (implemented in OCaml) [22], “C-leanCoP” (imple-
mented in C) [23], RACCOON/leanCoR (for the description logic ALC) [24], �eanCoP/fnanoCoP
(implemented in OCaml) [25], SATCoP (integrating a SAT solver) [26], meanCoP (implemented
in Rust) [27], Connect++ (in C++) [28], and pyCoP/ipyCoP/mpyCoP (in Python) [29].
At TABLEAUX 2011, the MaLeCoP [30] prover was presented, one of the �rst implementa-

tions that integrated Machine Learning (ML) into a theorem prover. It was the starting point for
a whole series of ML provers based on or inspired by leanCoP. Among them are FEMaLeCoP (an
optimized MaLeCoP) [31], rlCoP (reinforcement learning using Monte Carlo search) [32], plCoP
(adds Monte Carlo tree search to leanCoP) [33], graphCoP (uses graph neural network mod-
els) [34], monteCoP (using Monte Carlo search) [25], lazyCoP (implements lazy paramodulation
using deep neural networks) [35], and FLoP (geared towards �nding longer proofs) [36].



References

[1] J. Otten, W. Bibel, leanCoP: lean connection-based theorem proving, Journal of Symbolic
Computation 36 (2003) 139–161.

[2] W. Bibel, Matings in matrices, Commun. ACM 26 (1983) 844–852.
[3] W. Bibel, Automated Theorem Proving, Arti�cial intelligence, F. Vieweg und Sohn, 1987.
[4] B. Beckert, J. Posegga, leanTAP: Lean tableau-based deduction, Journal of Automated

Reasoning 15 (1995) 339–358.
[5] W. McCune, L. Wos, Otter – the CADE-13 competition incarnations, Journal of Automated

Reasoning 18 (1997) 211–220.
[6] J. Otten, Restricting backtracking in connection calculi, AI Commun. 23 (2010) 159–182.
[7] J. Otten, leanCoP 2.0 and ileanCoP 1.2: High performance lean theorem proving in classical

and intuitionistic logic, in: A. Armando, P. Baumgartner, G. Dowek (Eds.), IJCAR 2008,
volume 5195 of LNAI, Springer, 2008, pp. 283–291.

[8] L. Kovacs, A. Voronkov, First-Order Theorem Proving and Vampire, in: N. Sharygina,
H. Veith (Eds.), Proceedings of the 25th International Conference on Computer Aided
Veri�cation, number 8044 in LNAI, Springer-Verlag, 2013, pp. 1–35.

[9] G. Sutcli�e, The CADE-21 automated theorem proving system competition, AI Commun.
21 (2008) 71–81.

[10] J. Otten, Clausal connection-based theorem proving in intuitionistic �rst-order logic, in:
B. Beckert (Ed.), TABLEAUX 2005, volume 3702 of LNAI, Springer, 2005, pp. 245–261.

[11] L. A. Wallen, Automated Deduction in Nonclassical Logics, MIT Press, Cambridge, 1990.
[12] J. Otten, W. Bibel, Advances in connection-based automated theorem proving, in:

M. Hinchey, J. P. Bowen, E.-R. Olderog (Eds.), Provably Correct Systems, NASA Mono-
graphs in Systems and Software Engineering, Springer, Cham, 2017, pp. 211–241.

[13] J. Otten, Implementing connection calculi for �rst-order modal logics, in: K. Korovin,
S. Schulz, E. Ternovska (Eds.), IWIL 2012, volume 22 of EPiC Series in Computing, EasyChair,
2012, pp. 18–32.

[14] J. Otten, MleanCoP: A connection prover for �rst-order modal logic, in: S. Demri, D. Kapur,
C. Weidenbach (Eds.), IJCAR 2014, volume 8562 of LNAI, Springer, 2014, pp. 269–276.

[15] J. Otten, nanoCoP: A non-clausal connection prover, in: N. Olivetti, A. Tiwari (Eds.),
IJCAR 2016, volume 9706 of LNAI, Springer, Heidelberg, 2016, pp. 302–312.

[16] J. Otten, nanoCoP: Natural non-clausal theorem proving, in: C. Sierra (Ed.), Proceedings
of the Twenty-Sixth International Joint Conference on Arti�cial Intelligence, IJCAI-17,
Sister Conference Best Paper Track, IJCAI, 2017, pp. 4924–4928.

[17] J. Otten, A non-clausal connection calculus, in: K. Brünnler, G. Metcalfe (Eds.), TABLEAUX
2011, volume 6793 of LNAI, Springer, Heidelberg, 2011, pp. 226–241.

[18] W. Bibel, J. Otten, From Schütte’s formal systems to modern automated deduction, in:
R. Kahle, M. Rathjen (Eds.), The Legacy of Kurt Schütte, Springer, Cham, 2020, pp. 217–251.

[19] J. Otten, Non-clausal connection calculi for non-classical logics, in: R. Schmidt, C. Nalon
(Eds.), TABLEAUX 2017, volume 10501 of LNAI, Springer, Cham, 2017, pp. 209–227.

[20] J. Otten, The nanoCoP 2.0 connection provers for classical, intuitionistic and modal logics,
in: A. Das, S. Negri (Eds.), TABLEAUX 2021, volume 12842 of LNAI, Springer, 2021, pp.
236–249.



[21] J. S. Hodas, N. Tamura, lolliCoP - A linear logic implementation of a lean connection-
method theorem prover for �rst-order classical logic, in: R. Goré, A. Leitsch, T. Nipkow
(Eds.), IJCAR 2001, volume 2083 of LNCS, Springer, 2001, pp. 670–684.

[22] C. Kaliszyk, J. Urban, J. Vyskočil, Certi�ed Connection Tableaux Proofs for HOL Light and
TPTP, in: CPP 2015, CPP ’15, ACM, New York, NY, USA, 2015, pp. 59–66.

[23] C. Kaliszyk, E�cient low-level connection tableaux, in: H. de Nivelle (Ed.), TALBEAUX
2015, volume 9323 of LNCS, Springer, 2015, pp. 102–111.

[24] D. M. Filho, F. Freitas, J. Otten, Raccoon: A connection reasoner for the description logic
alc, in: T. Eiter, D. Sands (Eds.), LPAR-21, volume 46 of EPiC Series in Computing, EasyChair,
2017, pp. 200–211.

[25] M. Färber, C. Kaliszyk, J. Urban, Machine learning guidance for connection tableaux, J.
Autom. Reason. 65 (2021) 287–320.

[26] M. Rawson, G. Reger, Eliminating models during model elimination, in: A. Das, S. Negri
(Eds.), Automated Reasoning with Analytic Tableaux and Related Methods, volume 12842
of LNCS, Springer, 2021, pp. 250–265.

[27] M. Färber, Connection Provers in Rust, 2022. URL: https://github.com/01mf02/cop-rs.
[28] S. B. Holden, Connect++: a fast, �exible and modi�able connection prover to support

machine learning, in: J. Otten, W. Bibel (Eds.), Proceedings of the Workshop on Automated
Reasoning with Connection Calculi (AReCCa), 2023.

[29] F. Rømming, J. Otten, S. B. Holden, Connections: Markov decision processes for classical,
intuitionistic, and modal connection calculi, in: J. Otten, W. Bibel (Eds.), Proceedings of
the Workshop on Automated Reasoning with Connection Calculi (AReCCa), 2023.

[30] J. Urban, J. Vyskočil, P. Štěpánek, MaLeCoP Machine Learning Connection Prover, in:
K. Brünnler, G. Metcalfe (Eds.), Automated Reasoning with Analytic Tableaux and Related
Methods, Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2011, pp.
263–277.

[31] C. Kaliszyk, J. Urban, FEMaLeCoP: Fairly e�cient machine learning connection prover,
in: M. Davis, A. Fehnker, A. McIver, A. Voronkov (Eds.), LPAR-20, volume 9450 of LNAI,
Springer, Heidelberg, 2015, pp. 88–96.

[32] C. Kaliszyk, J. Urban, H. Michalewski, M. Olšák, Reinforcement Learning of Theorem
Proving, in: Advances in Neural Information Processing Systems, volume 31, Curran
Associates, Inc., 2018.

[33] Z. Zombori, J. Urban, C. E. Brown, Prolog technology reinforcement learning prover, in:
N. Peltier, V. Sofronie-Stokkermans (Eds.), IJCAR 2020, volume 12167 of LNAI, Springer,
Cham, 2020, pp. 489–507.

[34] M. Olšák, C. Kaliszyk, J. Urban, Property invariant embedding for automated reasoning,
in: G. D. Giacomo, et al. (Eds.), ECAI 2020, volume 325 of Frontiers in Arti�cial Intelligence

and Applications, IOS Press, Amsterdam, 2020, pp. 1395–1402.
[35] M. Rawson, G. Reger, lazyCoP: Lazy Paramodulation Meets Neurally Guided Search, in:

A. Das, S. Negri (Eds.), Automated Reasoning with Analytic Tableaux and Related Methods,
Lecture Notes in Computer Science, Springer, Cham, 2021, pp. 187–199.

[36] Z. Zombori, A. Csiszárik, H. Michalewski, C. Kaliszyk, J. Urban, Towards Finding Longer
Proofs, in: A. Das, S. Negri (Eds.), Automated Reasoning with Analytic Tableaux and
Related Methods, Lecture Notes in Computer Science, Springer, Cham, 2021, pp. 167–186.

https://github.com/01mf02/cop-rs

