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Abstract
The talk gives a comprehensive overview of the automated theorem prover leanCoP and all its variants
for classical and non-classical �rst-order logics. It includes historical details describing how seven lines
of Prolog code turned into some of the most popular and e�cient connection provers for classical and
non-classical logics. The talk also provides an overview of the non-clausal version nanoCoP and on
other implementations inspired by leanCoP, in particular those integrating Machine Learning.
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leanCoP — How it Started

20 years ago, the paper “leanCoP: Lean Connection-based Theorem Proving” [1] started the
development of a series of compact connection provers for classical and several non-classical
logics. The very �rst version of leanCoP was written a few years earlier, when the author was
asked to take on a lecture of Wolfgang Bibel’s course “Inferenzmethoden” at TU Darmstadt,
because he was out of town. This prover was intended to show the students a compact Prolog
implementation of the (classical) connection calculus [2, 3] which was the topic of the lesson at
that time. Slightly simplifying that code and adding the positive start clause technique resulted
in leanCoP 1.0, whose compact version of the Prolog code is shown in the abstract of the 2003
leanCoP article. With a size of 333 bytes, the core code was smaller than that of the �rst popular
lean prover leanTAP [4], whose compact Prolog code had a size of 360 bytes.
Even though leanCoP 1.0 already outperformed the famous Otter theorem prover [5] on a

small number of problems, it was not until the year 2006 when the development of leanCoP got
a huge boost. The good preliminary results on the problems of the MPTP challenge led to the
integration of further optimizations, e.g. regularity, lemmata, strategy scheduling, de�nitional
clausal form, and a more e�cient representation of the input clauses. But most importantly, it
included restricted backtracking [6], a novel and simple, but powerful strategy to signi�cantly
reduce the amount of backtracking during the proof search. At CASC in 2007, leanCoP 2.0 [7, 6]
had its debut and proved more problems than four other participating systems. It proved four
problems that were not solved by the Vampire prover [8] and was awarded Best Newcomer [9].
The compact version of the leanCoP 2.0 core prover is still only 555 bytes in size.
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leanCoP 2.1 returns a readable connection proof, uses a shell script with an improved strategy
scheduling, and directly supports the TPTP input syntax with equality. At CASC in 2008 and
2009, leanCoP is among the top three (original) provers that output a proof in the core FOF
division. At CASC in 2009, leanCoP-SiNE, which integrates the SiNE preprocessor, ends up in
third place in the proof class of the SUMO reasoning prize. At CASC in 2010, leanCoP-Ω, which
integrates the arithmetic Omega test, wins the �rst (linear integer) arithmetic TFA division.

ileanCoP andMleanCoP — Dealing with Non-classical Logics

ileanCoP 1.0 [10] was the �rst version of the connection prover for intuitionistic �rst-order
logic. It is based on leanCoP 1.0 extended by pre�xes and a pre�x uni�cation procedure [11, 12].
ileanCoP 1.2 [7] integrates all the techniques and strategies of leanCoP 2.0. At CASC in 2007,
ileanCoP proved two problems intuitionistically valid that the Vampire prover could not prove
classically valid, even though reasoning in intuitionistic logic is signi�cantly harder.
MleanCoP 1.2 [13] andMleanCoP 1.3 [14] are connection provers for the modal �rst-order

logics D, T, S4 and S5 with constant, cumulative and varying domains. They are based on
leanCoP 2.1 extended by pre�xes and pre�x uni�cation procedures that determine the speci�c
modal logic. Up to the release of nanoCoP-M 2.0 these were the fastest provers for modal logics.

nanoCoP — Non-clausal Reasoning

nanoCoP [15, 16] is a series of compact Prolog implementations of the non-clausal connection
calculus. The non-clausal connection calculus for classical [17, 18] and non-classical logics [19]
generalizes the clausal connection calculus. It uses the original input formula directly, without
translating it into any clausal form. Instead, the structure of the input formula is preserved
throughout the proof search. nanoCoP combines the advantages of more natural sequent and
tableau provers with the systematic and goal-oriented proof search of connection provers.

The nanoCoP 2.0 provers [20] integrate most of the optimization techniques of leanCoP 2.1
and can provide detailed non-clausal connection proofs. nanoCoP-i and nanoCoP-M are now
some of the fastest provers for intuitionistic and modal �rst-order logic, respectively.

Other CoPs — Re-Implementations and Machine Learning

Re-implementations and extensions of leanCoP include lolliCoP (implemented in the linear
logic programming language Lolli) [21], fCoP (implemented in OCaml) [22], “C-leanCoP” (imple-
mented in C) [23], RACCOON/leanCoR (for the description logic ALC) [24], �eanCoP/fnanoCoP
(implemented in OCaml) [25], SATCoP (integrating a SAT solver) [26], meanCoP (implemented
in Rust) [27], Connect++ (in C++) [28], and pyCoP/ipyCoP/mpyCoP (in Python) [29].
At TABLEAUX 2011, the MaLeCoP [30] prover was presented, one of the �rst implementa-

tions that integrated Machine Learning (ML) into a theorem prover. It was the starting point for
a whole series of ML provers based on or inspired by leanCoP. Among them are FEMaLeCoP (an
optimized MaLeCoP) [31], rlCoP (reinforcement learning using Monte Carlo search) [32], plCoP
(adds Monte Carlo tree search to leanCoP) [33], graphCoP (uses graph neural network mod-
els) [34], monteCoP (using Monte Carlo search) [25], lazyCoP (implements lazy paramodulation
using deep neural networks) [35], and FLoP (geared towards �nding longer proofs) [36].
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