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Abstract
Adding arithmetic and equalities to automated theorem provers is a complex process. This work presents
nanoCoP-Ω, a new lean non-clausal connection calculus automated theorem prover for �rst-order logic
with arithmetic and equality. It uses the Omega Library, which is based on Presburger arithmetic.
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1. Prerequisites

The Connection Calculus was �rst described in [1, 2]. The automated proof systems leanCoP
and nanoCoP are based on more recent descriptions from [3] and [4] respectively. These articles
describe a complete and sound proof system for �rst order formulas without arithmetic and
equalities that works roughly as follows.
A proof by contradiction is done by transforming the formula into a matrix. The structure

of the matrix describes how the literals contained within the formula can be used in the proof
of the said formula, i.e., it de�nes which literals can be used in reasoning together and which
literals belong to di�erent, orthogonal case distinctions of the proof.
An algorithm then searches for “connections” within the matrix: Complementary literals

from the original formula that yield contradictions. Once a connection has been found for every
possible case distinction of the proof, a proof by contradiction of the formula is complete.
Clausal versions of the connection calculus work on clausal form matrices. The conversion

into clausal form provides a minor computational overhead and makes the structure of the
original formula not recognizable when looking at the matrix. Both leanCoP and nanoCoP
can generate a human-readable proof as justi�cation. But as leanCoP operates on clausal form
matrices its proofs tend to be less readable than nanoCoP’s.
The Omega Library is a library developed by the Omega Project Team [5]. It utilizes the

Omega Test [6] to test for satis�ability of equalities and inequalities connected by disjunctions
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and conjunctions. As the Omega Test is based on Presburger arithmetic [7], the library is limited
in the same way: Reasoning is limited to linear polynomials. For example, division and prime
numbers cannot be de�ned since the arithmetic is limited to general addition and constant
multiplication of integer values. This limited reasoning capacity allows for a completeness and
decidability, which are desirable for automated proof systems. The Omega Library is utilized by
leanCoP-Ω, �rst presented in [8], and nanoCoP-Ω, the result of this work.

Until now the connection calculus can only handle equalities uninterpreted, i.e. an equality
containing arithmetic expressions cannot be processed. leanCoP-Ω introduced new methods for
handling arithmetic expressions and (in-) equalities in connection calculi. Literals containing
equalities can be proven by several methods: Firstly, with connections, just like regular literals.
Secondly, by being trivial (i.e. solvable by Prolog) and thirdly, by constructing an equation
system that is tested for validity by the Omega Library. Lastly it may be necessary to collect
more literals containing equalities and then check the larger system for validity. These methods
needed to be added to nanoCoP to create nanoCoP-Ω.

2. The nanoCoP-Ω Implementation

nanoCoP-Ω is an extension of nanoCoP by arithmetic and equality handling procedures. As
such, it is a Prolog program that transforms the formula into a non-clausal matrix that stores
variable dependencies, the number of submatrix instantiations and clause identi�ers. Prolog’s
integrated search algorithm with backtracking and Prolog’s logic programming paradigm then
allows stating the proof rules of the non-clausal connection calculus in their desired order to
construct a proof system.
The computation of the sub-matrices needed after each proof step is a complex process

based on the matrix’ shape. Prolog’s cut allows for the introduction of restricted backtracking.
Expressions implementing iterative deepening are added to ensure completeness. The equality
axioms are explicitly added to the formula. Uni�cation with occurs check is done by using an
internal Prolog predicate and the skolem form representation of the variables. A �xed strategy
scheduling is used to iteratively invoke the proof search with di�erent strategies.
The arithmetic and (in-) equality handling methods of leanCoP-Ω were added to nanoCoP

with several adjustments to the di�erent matrix representations required for non-clausal form
matrices. The interface used to invoke the Omega Library from nanoCoP’s Prolog code was
adapted from leanCoP-Ω[9], which uses a shared object and Prolog’s foreign language interface.
A transformation due to di�erent matrix representation was necessary again.

3. Evaluation

We compared the clausal leanCoP-Ω (as provided in [9]) to the non-clausal nanoCoP-Ω. The
comparison was done with 1007 non-polymorphic typed �rst-order logic theorems from the
TPTP library v8.0.0 [10]. The problems stem from multiple domains.

leanCoP-Ω has a success rate of 30.5% and nanoCoP-Ω has one of 25.5%. leanCoP-Ω solves 82
problems that nanoCoP-Ω does not solve and nanoCoP-Ω solves 32 problems that leanCoP-Ω
does not. Both solvers performed well on problems from the ARI and NUM domains and



leanCoP-Ω performs better than nanoCoP-Ω for problems from the SWW domain. nanoCoP-Ω
is faster than leanCoP-Ω in all but 13 of 255 problems both systems solve, with an overall
average speedup of approx. 2.3 and a larger speedup for small formulas.

We thus conclude that nanoCoP-Ω is a capable system that is especially fast for small problems.

4. Conclusion

We developed a proof system capable of handling �rst order logic with Presburger arithmetic.
It is comparable in the number of solved problems to its predecessor leanCoP-Ω[8], while being
considerably faster for many problems. As a non-clausal prover it provides more easily readable
proofs.

There is potential for future work: The combination of leanCoP-Ω and nanoCoP-Ω could yield
a more powerful prover and further optimizations within nanoCoP-Ω are possible. Furthermore,
the interface provided in [9] together with transformation operations provided in nanoCoP-Ω
can be a basis for extension by other arithmetic decision procedures.
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