
Connections: Markov Decision Processes for Classical,
Intuitionistic, and Modal Connection Calculi
Fredrik Rømming1, Jens Otten2 and Sean B. Holden1

1University of Cambridge, The Old Schools, Trinity Lane, Cambridge CB2 1TN, United Kingdom
2University of Oslo, Problemveien 11, 0313 Oslo, Norway

Abstract
This paper introduces a framework for integrating Reinforcement Learning (RL) with proof search in
connection calculi for classical, intuitionistic, and modal logic. We specify a mapping from the relevant
connection calculi to Markov Decision Processes (MDPs), and provide a Python library implementing
such MDPs.

Keywords
Reinforcement Learning, Automated Reasoning, Connection Calculus, Intuitionistic Logic, Modal Logic

1. Introduction

Automated Theorem Proving (ATP) is concerned with determining whether a given formula is
valid in a specific logic. Complementary to classical logic, intuitionistic logic is used within
interactive proof assistants such as NuPRL [1] and Coq [2], while modal logics [3, 4] have
applications in planning, natural language processing and program verification. The com-
plexity of ATP is higher in these non-classical logics than in classical logic, and applications
would benefit from improved reasoning tools. One approach to dealing with the non-classical
logics is to encode their Kripke semantics with labels or prefixes [5, 6]. Two powerful ATP
systems—ileanCoP [7] andMleanCoP [8]—use prefixes and are based on (clausal) connection
calculi for non-classical logics [9, 10, 11].
Combining ATP and Machine Learning (ML) can enhance existing ATP systems (or theorem

provers) [12, 13, 14, 15]. Using ML to guide the proof search clearly has the potential to lead to
more efficient ATP systems, while preserving their ability to provide formal proofs. ML can be
used in fully automated ATP systems for premise selection, strategy choice [16] and inference
choice. Whereas the first two approaches use ML in a pre-processing step, in the third approach
ML is tightly integrated into the proof search.

This paper introduces a framework for integrating Reinforcement Learning (RL) with proof
search in connection calculi for classical, intuitionistic, and modal first-order logic. The are two

AReCCa 2023: Automated Reasoning with Connection Calculi. International Workshop, TABLEAUX 2023. 18 September
2023. Prague, Czech Republic
Envelope-Open fr409@cam.ac.uk (F. Rømming); jeotten@ifi.uio.no (J. Otten); sbh11@cl.cam.ac.uk (S. B. Holden)
GLOBE http://www.cl.cam.ac.uk/~fr409 (F. Rømming); http://jens-otten.de/ (J. Otten); http://www.cl.cam.ac.uk/~sbh11
(S. B. Holden)
Orcid 0000-0001-7545-4662 (F. Rømming); 0000-0002-4331-8698 (J. Otten); 0000-0001-7979-1148 (S. B. Holden)

© 2023 For the purpose of open access, the author has applied a Creative Commons Attribution (CC BY) licence to any Author Accepted
Manuscript version arising from this submission

CEUR

Workshop
Proceedings

http://ceur-ws.org

ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:fr409@cam.ac.uk
mailto:jeotten@ifi.uio.no
mailto:sbh11@cl.cam.ac.uk
http://www.cl.cam.ac.uk/~fr409
http://jens-otten.de/
http://www.cl.cam.ac.uk/~sbh11
https://orcid.org/0000-0001-7545-4662
https://orcid.org/0000-0002-4331-8698
https://orcid.org/0000-0001-7979-1148
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

main contributions:

1. The discussion and definition of a mapping from classical and non-classical connection
calculi to Markov Decision Processes (MDPs).

2. A Python library implementing such MDPs providing seamless integration with the ML
ecosystem facilitating RL experiments for in-prover guidance.

We introduce the connection calculi and ML techniques in Section 2. Section 3 specifies a
mapping from proof search to the RL setting. Section 4 describes the implementation of the
library. The paper concludes with a summary and a plan for future work.

2. Preliminaries

2.1. Classical, Intuitionistic and Modal Connection Calculi

The following methods are based on uniform clausal connection calculi. We provide a short
overview of these calculi; more details can be found in [17, 9, 18, 8].
An atomic formula (denoted by 𝐴) is built up from predicate symbols (denoted by 𝑃, 𝑄, 𝑅),

function symbols and term variables (𝑥, 𝑦). A (first-order) formula (denoted by 𝐹) is built up from
atomic formulae, the connectives ¬, ∧, ∨, ⇒, and the first-order quantifiers ∀ and ∃. A modal
formula might also include the modal operators □ and ◇. A literal 𝐿 has the form 𝐴 or ¬𝐴. In
the (clausal) connection calculus a formula is represented as a matrix, which is a representation
of the formula in a (prefixed) clausal form.

2.1.1. Classical Logic

The classical matrix 𝑀(𝐹) of a formula 𝐹 is its representation as a set of clauses, where each
clause is a set of literals. It is the representation of 𝐹 in disjunctive normal form. Skolemization
of the Eigenvariables is done in the usual way. In the graphical representation of a matrix, its
clauses are arranged horizontally, while the literals of each clause are arranged vertically. In
contrast to sequent and tableau calculi, the connection calculus uses a connection-driven search
to find a proof for the validity of a matrix 𝑀(𝐹) for a given formula 𝐹.
A connection is a set {𝐴1, ¬𝐴2} of literals with the same predicate symbol but different

polarities. A term substitution 𝜎𝑇 assigns terms to variables. A connection is 𝜎𝑇-complementary
iff 𝜎𝑇(𝐴1) = 𝜎𝑇(𝐴2). The axiom and the three rules of the (clausal) connection calculus are
given in Figure 1 (∶𝑝1 and ∶𝑝2 are to be ignored for classical logic) [17]. The words of the
calculus are tuples “𝐶,𝑀, Path”, where 𝑀 is a matrix, 𝐶 is a (subgoal) clause or 𝜀 and (the active)
Path is a set of literals or 𝜀. A copy of a clause 𝐶 is made by renaming all variables in 𝐶. The
rigid term substitution 𝜎 = 𝜎𝑇 is calculated by using one of the well-known term unification
algorithms whenever a connection is identified. A connection proof of 𝑀 is a proof of 𝜀, 𝑀, 𝜀
with a substitution 𝜎 = 𝜎𝑇.
2.1.2. Non-Classical Logics

For intuitionistic and modal logic, the matrix and the calculus are extended by prefixes, rep-
resenting world paths in the Kripke semantics; see [19, 5, 6]. A prefix 𝑝 is a string consisting

Axiom (A) {}, 𝑀, 𝑃𝑎𝑡ℎ Start (S)
𝐶2, 𝑀, {}𝜀, 𝑀, 𝜀 and 𝐶2 is copy of 𝐶1∈𝑀

Reduction (R)
𝐶,𝑀, 𝑃𝑎𝑡ℎ∪{𝐿2∶𝑝2}𝐶∪{𝐿1∶𝑝1}, 𝑀, 𝑃𝑎𝑡ℎ∪{𝐿2∶𝑝2} and {𝐿1∶𝑝1, 𝐿2∶𝑝2} is 𝜎-complementary

Extension (E)
𝐶2⧵{𝐿2∶𝑝2}, 𝑀, 𝑃𝑎𝑡ℎ∪{𝐿1∶𝑝1} 𝐶,𝑀, 𝑃𝑎𝑡ℎ𝐶∪{𝐿1∶𝑝1}, 𝑀, 𝑃𝑎𝑡ℎ and 𝐶2 is a copy of 𝐶1∈𝑀, 𝐿2∶𝑝2∈𝐶2,{𝐿1∶𝑝1, 𝐿2∶𝑝2} is 𝜎-complementary

Figure 1: The (clausal) connection calculus for classical, intuitionistic and modal logic

of variables (denoted by 𝑈 , 𝑉 ,𝑊) and constants (denoted by 𝑎, 𝑏) and assigned to each literal.
Skolemization is not only used for the (first-order) Eigenvariables, but extended to prefix con-
stants [9]. Using the occurs-check during unification this ensures that the reduction ordering is
acyclic [6]. The intuitionistic and modal matrix 𝑀(𝐹) of a formula 𝐹 is a representation of 𝐹 in
standard clausal form, in which each literal 𝐿 is marked with its prefix ∶𝑝 [9, 10, 11].
A prefix substitution 𝜎𝑃 assigns strings to prefix variables and is calculated by a prefix uni-

fication that depends on the specific non-classical logic [9, 10, 8]. In intuitionistic and modal
logic, a connection {𝐿1∶𝑝1, 𝐿2∶𝑝2} is 𝜎-complementary iff both its literals and prefixes can be
unified under a combined substitution 𝜎 = (𝜎𝑇, 𝜎𝑃); that is, additionally 𝜎𝑃(𝑝1) = 𝜎𝑃(𝑝2) must
hold. An intuitionistic/modal connection proof of𝑀 is a proof of 𝜀, 𝑀, 𝜀 in the calculus in Figure 1
substitution 𝜎 = (𝜎𝑇, 𝜎𝑃) [19, 6].
Example 1. Consider the formula 𝐹1 ∶= ((𝑃 ∨ ∀𝑥 ¬(𝑄𝑥 ⇒ 𝑄𝑐)) ∧ 𝑅) ⇒ (𝑃 ∧ 𝑅) . It has the
following intuitionistic (prefixed) matrix 𝑀 ∶= 𝑀(𝐹1){{𝑃0∶𝑈 𝑎∗2 , 𝑅0∶𝑈 𝑏∗2 }, {𝑃1∶𝑈𝑉1, 𝑄0𝑥∶𝑈𝑉𝑊𝑎∗1𝑏∗1 }, {𝑃1∶𝑈𝑉2, 𝑄1𝑐∶𝑈𝑉𝑊𝑎∗1𝑉3}, {𝑅1∶𝑈𝑉4}}
where 𝑎∗1 ∶= 𝑎1(𝑈 , 𝑉 , 𝑥, 𝑊), 𝑏∗1 ∶= 𝑏1(𝑈 , 𝑉 , 𝑥, 𝑊), 𝑎∗2 ∶= 𝑎2(𝑈), 𝑏∗2 ∶= 𝑏2(𝑈).1 𝑀 has the follow-
ing graphical representation and (graphical) connection proof with the substitutions 𝜎𝑇(𝑥) = 𝑐
and 𝜎𝑃(𝑉1) = 𝑎∗2 , 𝜎𝑃(𝑉2) = 𝑎∗2 , 𝜎𝑃(𝑉3) = 𝑏∗1 , 𝜎𝑃(𝑉4) = 𝑏∗2 ; literals of each connection are connected
with a line.

[[𝑃0∶𝑈 𝑎∗2𝑅0∶𝑈 𝑏∗2] [𝑃1∶𝑈𝑉1𝑄0𝑥∶𝑈𝑉𝑊𝑎∗1𝑏∗1] [𝑃1∶𝑈𝑉2𝑄1𝑐∶𝑈𝑉𝑊𝑎∗1𝑉3] [𝑅1∶𝑈𝑉4]]
The formal connection proof (where prefixes are omitted) is shown in Figure 2.

2.2. MDPs and Reinforcement Learning

We now provide an introduction to MDPs and RL—details can be found in [21].
Most proof procedures are search algorithms: there is an initial state, states can be modified by

actions, and the goal is to find a proof state. The use of heuristics is crucial for performance. For

1Polarities (∈ {0, 1}) are used to mark negated and non-negated literals (see [20, 6]).

A{}, 𝑀, {𝑃 0, 𝑄0𝑥 ′}
R{𝑃 1}, 𝑀, {𝑃 0, 𝑄0𝑥 ′} A

{}, 𝑀, {𝑃 0}
E{𝑄0𝑥 ′}, 𝑀, {𝑃 0} A{}, 𝑀, {𝑅0} A{}, 𝑀, {}

E{𝑅0}, 𝑀, {}
E{𝑃 0, 𝑅0}, 𝑀, {}

S𝜀, {{𝑃 0, 𝑅0}, {𝑃 1, 𝑄0𝑥}, {𝑃 1, 𝑄1𝑐}, {𝑅1}}, 𝜀
Figure 2: Formal connection proof of the matrix 𝑀 = 𝑀(𝐹1)
example, in the case of saturation provers, for choosing a pair of clauses to resolve. One might
imagine an agent, armed with a heuristic, acting to change the initial state of its environment
into a state representing a proof.

An MDP represents a more general formulation of this kind of problem. Let 𝑆 denote the set
of states, and let 𝐴 denote the set of actions. When an agent performs action 𝑎 ∈ 𝐴 in state 𝑠 ∈ 𝑆,
the environment moves to a new state 𝑠′ ∈ 𝑆 with probability 𝒮(𝑆′|𝑠, 𝑎); that is, 𝑠′ ∼ 𝒮(𝑆′|𝑠, 𝑎).
At the same time, the agent receives a reward ℛ(𝑠′; 𝑠, 𝑎) ∈ ℝ. The tuple (𝑆, 𝐴, 𝒮 ,ℛ) defines
the MDP. Let subscripts 𝑡 denote the sequence of states, actions and rewards through time, and
imagine the agent has a policy 𝜋 ∶ 𝑆 → 𝐴 telling it which action to employ in any given state;
that is, at time 𝑡 the agent always applies 𝑎𝑡 = 𝜋(𝑠𝑡). Then, starting from a state 𝑠0, the agent will
move through states 𝑠0 → 𝑠1 ∼ 𝒮(𝑆1|𝑠0, 𝜋(𝑠0)) → 𝑠2 ∼ 𝒮(𝑆2|𝑠1, 𝜋(𝑠1)) → ⋯
and receive a sequence of rewards𝑟0 = ℛ(𝑠1; 𝑠0, 𝜋(𝑠0)) → 𝑟1 ∼ ℛ(𝑠2; 𝑠1, 𝜋(𝑠1)) → ⋯ .
A utility function 𝑈 𝜋(𝑠) computes the overall accumulated reward associated with the use of 𝜋,
starting from state 𝑠. As future rewards are often perceived as less valuable than short-term
rewards, a common function is𝑈 𝜋(𝑠) = 𝔼 [𝑟0 + 𝜖𝑟1 + 𝜖2𝑟2 + ⋯] = 𝔼 [∞∑𝑡=0 𝜖 𝑡𝑟𝑡]
where the expected value is with respect to the randomness governing the state transitions,
and 𝜖 ∈ [0, 1] sets the trade-off between short-term and long-term rewards. An optimal policy𝜋⋆ is one satisfying 𝜋⋆(𝑠) = argmin𝜋 𝑈 𝜋(𝑠), and which leads to utility 𝑈 𝜋⋆(𝑠).
Both the optimal policy and its corresponding utility can be expressed by considering what

happens if we take particular actions from the current state and follow the optimal policy
thereafter 𝑈 𝜋⋆(𝑠) = max𝑎 ∑𝑠′ 𝒮(𝑠′|𝑠, 𝑎) (ℛ(𝑠′; 𝑠, 𝑎) + 𝜖𝑈 𝜋⋆(𝑠′))𝜋⋆(𝑠) = argmax𝑎 ∑𝑠′ 𝒮(𝑠′|𝑠, 𝑎) (ℛ(𝑠′; 𝑠, 𝑎) + 𝜖𝑈 𝜋⋆(𝑠′)) .
Numerous algorithms exist for inferring an optimal policy for an MDP, depending on what is
known about the MDP. If little is known, we must learn about the environment by exploring
actions and their effects, and this is what RL achieves.

3. Connection Calculi as Markov Decision Processes

As described in the previous section, RL concerns agents interacting with environments. In
the case of proof procedures, one can consider an agent deciding which choice to make at each
point in the proof search. Hence, to apply RL we need to define the proof search environment
and its choice points. We now address the description of proof search procedures in connection
calculi using MDPs.

While the reader familiar with the connection calculusmight be tempted to see the relationship
between proof and MDP as straightforward, it is in fact more subtle than is apparent at first
glance, and requires some care to define correctly. While the connection calculi define procedures
whereby sequential decisions are made to find proofs, they do not directly define MDPs. For
confluent proof calculi such as resolution, one can treat the words of the calculus as observations
and inference rules as actions, since all information about the state of the proof is carried in the
most recently generated word. However, this cannot be done with connection calculi, because
it is unclear how to handle branching and backtracking. The words of the connection calculi do
not carry enough information to know whether the current state is a goal state (a proof), or to
know what inferences have or have not been attempted. Allowing dead-end states that are not
proofs would be too restrictive, so backtracking is needed.
We now specify the state space, action space, transition space, and reward function tuple(𝑆, 𝐴, 𝒮 ,ℛ) for CC-MDP, an RL environment for proof search in connection calculi.

Definition 1 (CC-MDP State Space). The state space 𝑆 is defined as the set of all possible deriva-
tions (a derivation is an incomplete proof in which some leaves are not closed by axioms) in the
connection calculus together with the substitution 𝜎 = 𝜎𝑇. Further, to keep track of the open
backtracking choices, each node in the connection derivation is marked with the possible inference
steps that have not been attempted so far.

For efficiency reasons, the rigid prefix substitution 𝜎𝑃 (for the non-classical logics) is only
calculated after a classical proof has been found. It is therefore not part of the states in 𝑆 (see
also the description of the implementation in Section 4).

Example 2. Consider the formula ((𝑃 ∨ ∀𝑥 ¬(𝑄𝑥 ⇒ 𝑄𝑐)) ∧ 𝑅) ⇒ (𝑃 ∧ 𝑅) from Example 1 and its
classical matrix𝑀 = {{𝑃, 𝑅}, {¬𝑃, 𝑄𝑥}, {¬𝑃, ¬𝑄𝑐}, {¬𝑅}}. Figure 3 shows a (possible) state 𝑠 ∈ 𝑆 in
the proof search of 𝑀. 𝑠 includes a derivation of 𝑀 together with the substitution 𝜎𝑇, and for
each node a list of non-attempted inference steps.

{¬𝑃},𝑀, {𝑃, 𝑄𝑥 ′} {}, 𝑀, {𝑃}𝐼3 E{𝑄𝑥 ′} , 𝑀, {𝑃} {𝑅},𝑀, {}𝐼2 E{𝑃, 𝑅}, 𝑀, {}𝐼1 S𝜀, {{𝑃 , 𝑅}, {¬𝑃, 𝑄𝑥}, {¬𝑃, ¬𝑄𝑐}, {¬𝑅}}, 𝜀
𝜎𝑇 = {𝑥 ′\𝑐}
Non-attempted:𝐼3 ∶ {}𝐼2 ∶ {(E,{¬𝑃, ¬𝑄𝑐})}𝐼1 ∶ {}

Figure 3: A CC-MDP state for the matrix 𝑀

Definition 2 (CC-MDP Action Space). The action space 𝐴 consists of rule application actions𝐴inferences and a backtracking action 𝑎𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘. There is a rule application action for each rule in
the connection calculus. Hence, a rule application action 𝑎𝑟 ,𝑥 ∈ 𝐴inferences is specified by the rule
name 𝑟 ∈ {𝑆, 𝑅, 𝐸} (for Start, Reduction or Extension) and the associated clause and/or literal 𝑥.
Specifically, an action 𝑎𝑟 ,𝑥 can have one of the following forms: 𝑎𝑆,𝐶2 for the Start rule, 𝑎𝑅,𝐿2 for the
Reduction rule and 𝑎𝐸,𝐶2/𝐿2 for the Extension rule.

Example 3. To get from the initial state 𝜀, 𝑀, 𝜀 to the state in Figure 3 one can take the actions:𝑎𝑆,{𝑃 ,𝑅}, 𝑎𝐸,{¬𝑃,𝑄𝑥′}/¬𝑃, 𝑎𝐸,{¬𝑄𝑐,¬𝑃}/¬𝑄𝑐. These actions are a start step with the clause {𝑃, 𝑅},
followed by two extension steps connecting the leftmost literal2 in the leftmost open subgoals of
the proof tree to the literal 𝑃 in the clause {¬𝑃, 𝑄𝑥′} and the literal ¬𝑄𝑐 in the clause {¬𝑄𝑐, ¬𝑃}.

We say that action 𝑎 is valid in state 𝑠 if action 𝑎 = 𝑎backtrack or 𝑎 is a rule application action𝑎𝑟 ,𝑥 ∈ 𝐴inferences denoting a valid rule application to the leftmost literal in the leftmost open
subgoal in the proof tree of 𝑠. A valid rule application takes the rigid term substitution 𝜎𝑇 into
account, so 𝜎𝑇(𝐿1) = 𝜎𝑇(𝐿2). As for the states in the state space 𝑆, the rigid prefix substitution𝜎𝑃 is not taken into account (and updated) for the non-classical logics. For the application
of the reduction and the extension rule, we only require that the prefixes 𝑝1 and 𝑝2 of the
connection can be unified under a (new) local prefix substitution 𝜎 ′𝑃 (using a so-called weak
prefix unification). To handle proper backtracking, when a rule application action 𝑎 is taken
from state 𝑠 to 𝑠′, 𝑎 is no longer counted as a non-attempted inference for the node in the tableau
of 𝑠′ corresponding to the principle node of 𝑎. The special action 𝑎backtrack backtracks the state’s
derivation from the leftmost literal in the leftmost subgoal to the previous choice point, which
still has non-attempted inferences.
In general an MDP models state transitions stochastically—performing action 𝑎 in state 𝑠

leads to a new state 𝑠′ ∼ 𝒮(𝑆′|𝑠, 𝑎). In a connection prover the transition is deterministic, in the
sense that performing action 𝑎 in state 𝑠 leads reliably to a single outcome state 𝑠′. This gives
rise to the following deterministic state transition function.

Definition 3 (CC-MDP Transition Function). The transition distribution 𝒮 is defined as

𝒮(𝑆′ = 𝑠′|𝑠, 𝑎) = ⎧⎨⎩
1 if 𝑎 is valid in 𝑠 and 𝑠′ is the (deterministic) result

of applying 𝑎 to 𝑠0 otherwise.
Notice that the transition function is necessarily deterministic, as any probabilistic transition

function would not accurately describe the dynamics of the underlying system.
We only consider the first literal of the leftmost open subgoal for rule application. This is

because all subgoals need to be closed, so we do not consider alternative subgoals and literals
within subgoals as choice points for the MDP.

Definition 4 (CC-MDP Reward Function). To remain faithful to the underlying problem, we
consider the following relatively sparse reward functionℛ(𝑠′; 𝑠, 𝑎) = {1 if 𝑠′ is a proof0 otherwise

2All clauses (including subgoal clauses) are treated as ordered sets of literals.

where 𝑠′ is a proof iff the derivation of 𝑠′ is a proof under the unique (combined) substitution 𝜎 = 𝜎𝑇
(for classical logic) or 𝑠𝑖𝑔𝑚𝑎 = (𝜎𝑇, 𝜎𝑃) of 𝑠′.

This reward function is the simplest function accurately describing the goal while preserving
optimality of solutions.

Example 4. Figure 4 shows the graph representation of a part of CC-MDP.

ε, {{P,R}, {¬P,Qx}, {¬P,¬Qc}, {¬R}}, ε

{P,R},M, {}
S

ε, {{P,R}, {¬P,Qx}, {¬P,¬Qc}, {¬R}}, ε

{Qx′} ,M, {P} {R},M, {}
E

{P,R},M, {}
S

ε, {{P,R}, {¬P,Qx}, {¬P,¬Qc}, {¬R}}, ε

{¬Qc} ,M, {P} {R},M, {}
E

{P,R},M, {}
S

ε, {{P,R}, {¬P,Qx}, {¬P,¬Qc}, {¬R}}, ε

{¬P},M, {P,Qx′} {},M, {P}
E

{Qx′} ,M, {P} {R},M, {}
E

{P,R},M, {}
S

ε, {{P,R}, {¬P,Qx}, {¬P,¬Qc}, {¬R}}, ε

aS,{P,R}

aE,{¬P,Qx}/¬P aE,{¬P,¬Qc}/¬Qc

aE,{¬P,¬Qc}/¬Qc

Figure 4: Part of the CC-MDP graph (omitting 𝜎s and non-attempted inferences)

Proof search in the classical and non-classical connection calculi can be framed as an agent
interacting with the CC-MDP environment, giving the necessary theoretical framework for
applying RL to the proof search in these connection calculi.

4. Implementation

4.1. Connection Calculi as MDPs in Python

Connections [22] is a Python library of connection calculi implemented as MDPs, providing
environments for proof search in connection calculi. It provides OpenAI Gym/Gymnasium-
like [23] environments for proof search in connection calculi for classical, intuitionistic, and
modal first-order logic. It currently supports the modal logics D, T, S4, and S5, each for the
constant, cumulative, and varying domains.
Connections implements the basic calculi for classical, intuitionistic, and modal logic as

described above, enhanced by regularity [24]. The observation and action spaces are as described
in Section 3, treating literals and (first-order) terms as objects associated with locations in a
matrix (represented as a list of lists of literals) and as a tableau-like proof tree. For intuitionistic
andmodal logic, literals and terms have an extra field for their prefixes represented as (first-order)
terms. Connections is implemented natively in Python with no dependencies. As Python is the
de-facto language for ML, the library provides an accessible and reproducible way to conduct
RL experiments with provers based on connection calculi. Using standardized frameworks

 Connections

 Logical primitives

Matrix Literal Term

 Connection Environments

ConnectionEnv

ConnectionAction ConnectionState

 Unification

Term unification Prefix unification (D, T, S4, S5, Intuitionistic)

Prover agent

action

state

reward

Figure 5: Overview of the Connections Python library and its main modules

increases confidence in the correctness of the implementation, and the environments can easily
be incorporated into the rest of the ML ecosystem alongside frameworks such as RLlib [25],
Stable Baselines [26], PyTorch [27], Tensorflow [28] and others. Figure 5 gives an overview of
Connections and how it fits into the RL setting.
Compared to conducting learning experiments with external calls to Prolog and OCaml

implementations of leanCoP, using the Connections environments drastically reduces the
complexity needed to control the prover. This is due to eliminating the need for remote
procedure calls, and to the imperative basis of the environments, which allow fine-grained
control while respecting abstraction levels. That is, since Connections is imperative (logic +
control, explicit state space) while Prolog implementations are declarative (logic + no control,
implicit state space), modifications to control such as the restriction of backtracking can easily
be made in ways that are much trickier if you try to use the Prolog cut. (See also [29].)

The non-classical Connections environments inherit from the classical environment, adding
logic-specific prefixes and prefix unification algorithms. The non-classical provers based on
Connections perform a classical proof search, in which the prefixes of the literals in each
connection are collected. After a classical proof is found, these prefixes are unified by a prefix
unification algorithm to ensure that the classical proof is also a valid non-classical proof.

Besides the basic calculi, the Connections environments implement two additional optimiza-
tions, significantly reducing the underlying search space while preserving completeness. The
start clause 𝐶1/𝐶2 of the start rule is restricted to positive start clauses (those with polarity
0) and the regularity condition [24] is employed. The translation into a (prefixed) matrix is
done in a pre-processing step. If the problem contains explicit axiom and conjecture formulas,
the standard/naive translation into clausal form is performed for the axiom formulas, while a
definitional translation [18] is performed for the conjecture formula.

The Connections environments are not provers by themselves, they expose an interface that
agents can use to train and make inferences, completing the RL agent-environment interaction
loop, as shown in Figure 5. A prover in this context is an agent making consecutive steps in a
Connections environment until it has found proof or timed out.

env = ConnectionEnv("problem_path")
observation, info = env.reset()
while True:

action = env.action_space[0] # Always choose first available action
observation, reward, terminated, truncated, info = env.step(action)
if terminated or truncated:

break

Figure 6: Python code for the pyCoP prover based on Connections

4.2. Python Connection Provers for Classic and Non-classical Logics

The Connections environments can be used to build both learning and non-learning connection
provers, depending on the agent used. For example, by using non-learning agents that always
choose the first available action, we obtain standard Python connection provers in an elegant
and straightforward way—the provers emerge from the interaction between the “always-first”
agent and a Connections environment. The complete Python code implementing such a prover
is shown in Figure 6. Depending on the environment used (ConnectionEnv, IConnectionEnv
or MConnectionEnv) this results in three (stand-alone) Python provers [22] for classical, intu-
itionistic and modal logics, called pyCoP, ipyCoP andmpyCoP respectively. These are based on
the same connection calculi as the leanCoP family of theorem provers implemented in Prolog
[17, 18, 9, 7, 10, 8]. By design, the pyCoP provers mimic the classical proof steps of leanCoP
1.0, using the positive start clause technique and iterative deepening on the size of the active
path. However, the pyCoP provers do not reorder clauses during proof search, and integrate an
enhanced regularity check [24]. This corresponds to version 1.0f of leanCoP [22].

While the main purpose of the Connections environments is to facilitate easy implementation
of learned provers for classical, intuitionistic, and modal logic using the MDP + agent view of
connection proof search, the pyCoP provers highlight the general (learning and non-learning)
capabilities of the Connections environments and give confidence in the correctness of their
implementation by showing that they can be used to emulate leanCoP, ileanCoP, and MleanCoP.

5. Conclusion

We present a Python library providing a framework for ML in connection calculi for classical and
non-classical logics, and with specific emphasis on facilitating experiments using RL to guide
proof search. Aside from its ML-centric component, this also represents the first non-Prolog
implementation of provers based on the clausal non-classical connection calculi, and using
prefix unification to capture the Kripke semantics of intuitioinistic and modal first-order logics.

We are at present using this library to experiment with RL methods in an attempt to improve
the performance of the unmodified provers, and we hope that the library inspires and facilitates
others to explore their own ideas within this space.
In future work we intend to extend the library to allow us more fully to address restricted

backtracking, refutation techniques and iterative deepening, and to include both further modal
logics, and non-clausal methods such as those of nanoCoP [30, 31].

References

[1] R. L. Constable, et al., Implementing Mathematics with the NuPRL proof development
system, Prentice–Hall, Englewood Cliffs, NJ, 1986.

[2] Y. Bertot, P. Castéran, Interactive Theorem Proving and Program Development Coq’Art:
The Calculus of Inductive Constructions, EATCS Series, Springer, Heidelberg, 2004.

[3] P. Blackburn, J. van Bentham, F. Wolter, Handbook of Modal Logic, Elsevier, Amsterdam,
2006.

[4] M. Fitting, R. L. Mendelsohn, First-Order Modal Logic, Kluwer, Dordrecht, 1998.
[5] A. Waaler, Connections in nonclassical logics, in: A. Robinson, A. Voronkov (Eds.),

Handbook of Automated Reasoning, Elsevier Science, Amsterdam, 2001, pp. 1487–1578.
[6] L. A. Wallen, Automated Deduction in Non-Classical Logics, MIT Press, Cambridge, 1990.
[7] J. Otten, leanCoP 2.0 and ileanCoP 1.2: High performance lean theorem proving in classical

and intuitionistic logic, in: A. Armando, P. Baumgartner, G. Dowek (Eds.), IJCAR 2008,
volume 5195 of LNAI, Springer, Heidelberg, 2008, pp. 283–291.

[8] J. Otten, MleanCoP: A connection prover for first-order modal logic, in: S. Demri, D. Kapur,
C. Weidenbach (Eds.), IJCAR 2014, volume 8562 of LNAI, Springer, Heidelberg, 2014, pp.
269–276.

[9] J. Otten, Clausal connection-based theorem proving in intuitionistic first-order logic, in:
TABLEAUX 2005, volume 3702 of LNAI, Springer, Heidelberg, 2005, pp. 245–261.

[10] J. Otten, Implementing connection calculi for first-order modal logics, in: E. Ternovska,
K. Korovin, S. Schulz (Eds.), 9th International Workshop on the Implementation of Logics
(IWIL 2012), volume 22 of EPIC, EasyChair, 2012, pp. 18–32.

[11] J. Otten, W. Bibel, Advances in connection-based automated theorem proving, in:
M. Hinchey, J. P. Bowen, E.-R. Olderog (Eds.), Provably Correct Systems, NASA Mono-
graphs in Systems and Software Engineering, Springer, Cham, 2017, pp. 211–241.

[12] J. Urban, J. Vyskočil, P. Štěpánek, MaLeCoP Machine Learning Connection Prover, in:
K. Brünnler, G. Metcalfe (Eds.), Automated Reasoning with Analytic Tableaux and Related
Methods, Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2011, pp.
263–277.

[13] G. Irving, C. Szegedy, A. A. Alemi, N. Een, F. Chollet, J. Urban, DeepMath - Deep Sequence
Models for Premise Selection, in: Advances in Neural Information Processing Systems,
volume 29, Curran Associates, Inc., 2016.

[14] C. Kaliszyk, J. Urban, H. Michalewski, M. Olšák, Reinforcement Learning of Theorem
Proving, in: Advances in Neural Information Processing Systems, volume 31, Curran
Associates, Inc., 2018.

[15] Z. Zombori, J. Urban, C. E. Brown, Prolog Technology Reinforcement Learning Prover,
in: N. Peltier, V. Sofronie-Stokkermans (Eds.), Automated Reasoning, Lecture Notes in
Computer Science, Springer International Publishing, Cham, 2020, pp. 489–507.

[16] C. Mangla, S. B. Holden, L. Paulson, Bayesian ranking for strategy scheduling in automated
theorem provers, in: J. Blanchette, L. Kovács, D. Pattinson (Eds.), Proceedings of the 11th
International Joint Conference on Automated Reasoning (IJCAR), volume 13385 of Lecture
Notes in Artificial Intelligence, Springer, 2022, pp. 559–577. 19 pages.

[17] J. Otten, W. Bibel, leanCoP: lean connection-based theorem proving, Journal of Symbolic

Computation 36 (2003) 139–161.
[18] J. Otten, Restricting backtracking in connection calculi, AI Commun. 23 (2010) 159–182.
[19] J. Otten, Non-clausal connection calculi for non-classical logics, in: R. Schmidt, C. Nalon

(Eds.), TABLEAUX 2017, volume 10501 of LNAI, Springer, Cham, 2017, pp. 209–227.
[20] R. M. Smullyan, First-Order Logic, Ergebnisse der Mathematik und ihrer Grenzgebiete,

Springer-Verlag, Berlin, Heidelberg, New York, 1968.
[21] R. S. Sutton, A. G. Barto, Reinforcement Learning: An Introduction, 2nd edition ed., MIT

Press, 2018.
[22] F. Rømming, Connections, 2023. URL: https://github.com/fredrrom/connections.
[23] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, W. Zaremba,

OpenAI Gym, 2016. ArXiv:1606.01540 [cs].
[24] R. Letz, G. Stenz, Model elimination and connection tableau procedures, in: Handbook of

Automated Reasoning, Elsevier Science Publishers, Amsterdam, 2001, pp. 2015–2112.
[25] E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, K. Goldberg, J. Gonzalez, M. Jordan,

I. Stoica, RLlib: Abstractions for Distributed Reinforcement Learning, in: Proceedings
of the 35th International Conference on Machine Learning, PMLR, 2018, pp. 3053–3062.
ISSN: 2640-3498.

[26] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, N. Dormann, Stable-baselines3:
Reliable reinforcement learning implementations, Journal of Machine Learning Research
22 (2021) 1–8.

[27] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al., Pytorch: An imperative style, high-performance deep
learning library, Advances in neural information processing systems 32 (2019).

[28] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,
J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Joze-
fowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Va-
sudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng,
TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software
available from tensorflow.org.

[29] S. B. Holden, Connect++: a fast, flexible and modifiable connection prover to support
machine learning, in: Proceedings of the Workshop on Automated Reasoning with
Connection Calculi (AReCCa), 2023.

[30] J. Otten, A non-clausal connection calculus, in: K. Brünnler, G. Metcalfe (Eds.), TABLEAUX
2011, volume 6793 of LNAI, Springer, Heidelberg, 2011, pp. 226–241.

[31] J. Otten, nanoCoP: A non-clausal connection prover, in: N. Olivetti, A. Tiwari (Eds.),
IJCAR 2016, volume 9706 of LNAI, Springer, Heidelberg, 2016, pp. 302–312.

https://github.com/fredrrom/connections

	1 Introduction
	2 Preliminaries
	2.1 Classical, Intuitionistic and Modal Connection Calculi
	2.1.1 Classical Logic
	2.1.2 Non-Classical Logics

	2.2 MDPs and Reinforcement Learning

	3 Connection Calculi as Markov Decision Processes
	4 Implementation
	4.1 Connection Calculi as MDPs in Python
	4.2 Python Connection Provers for Classic and Non-classical Logics

	5 Conclusion

