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Abstract
Connect++ is an automated theorem prover for �rst-order logic with equality, based on the clausal

connection calculus and designed with three primary goals. The �rst was to produce a system that is fast,

through careful coding in a compiled language (C++). The second was to allow the system to support

the addition of machine learning to the maximum extent possible. The third, somewhat inspired by the

success of the MiniSAT solver for Boolean satis�ability, was to provide an implementation su�ciently

modi�able as to provide a common basis for experiments by others. In addition to these aims I wanted to

exploit the opportunities inherent in the connection calculus to explore the production of readable and

certi�ed proofs. This paper describes the system as it stands; development is ongoing and some plans for

the future are also outlined.
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1. Introduction

Connect++ is a prover for �rst-order logic, implemented in C++ and based on clausal connection

calculus.1 The advantages of connection provers, with respect to their goal-oriented search and

ability to produce readable proofs, are well-known, and have led to great interest in their use

for applying machine learning (ML) to automated theorem proving (ATP). This paper introduces

Connect++, and gives a high-level description of the system; it also motivates its development.

The paper falls a little outside the usual form of discourse for such papers, combining three

related perspectives. First, it is a ‘system description’. Second, it argues for design decisions

based on practical experience in conducting large-scale experiments; a pursuit often mandating

use of preferred technologies for these two, often disparate research areas. Third, it presents

motivations underlying the system’s design decisions, based purely on accommodating ML.

The initial motivation for Connect++ arose while writing a review of ML applied to satis-

�ability (SAT) solvers [1]. It was apparent that there are many SAT solvers, but an enabler of

research over the last two decades wasMiniSAT [2], which had a transformative e�ect. MiniSAT
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was fast enough to be competitive,2 while being su�ciently easy to modify that it provided

a tool for other researchers. Much of the research leading to today’s best solvers relied on

MiniSAT. One aim of Connect++ is to provide a similar basis for experiments with connection

provers. (And this is true regardless of any ML.)

At present, several connection calculus provers are available, implemented in Prolog [5, 6],

C [7], OCaml [8, 9], Rust [10], Python [11] and C++ [12]. This has led to a di�culty which in

the SAT worldMiniSAT helped to defray: if two researchers conduct ML experiments using

di�erent solvers, how do we decouple the e�ect of the ML from the characteristics of the solvers?

For one to re-implement the other’s ML work on their own system would be a solution; but the

use of a common solver, in the manner of MiniSAT, would bene�t both sides.

Further motivation to develop Connect++ arose from two observations made while working

on ML applied to ATP more generally:

1. The ATP world has two main currencies: proving more things and proving known things

faster. This motivates the development of ATPs that are inherently fast. It is also in con�ict

with the use of lean ATPs for connection calculus, which tend to rely on languages known

not to be the fastest.

2. The ML world is heavily invested in Python, with the most prevalent libraries using

it to implement their API. To produce research in ML for ATP, one needs to run large

numbers of experiments. My own groups’ experience in continuing the work presented

in [13] was that there are signi�cant di�culties in combining Python (for ML), Prolog

(for leanCop [5, 6]), and one or more compiled languages supporting the overall process,

into an experiment on a high-performance computing facility.

These points suggested the development of a connection prover in a fast, complied langauge

such as C++, or in Python. C++ emphasizes the speed requirement and is the approach taken

here, addressing Point 1. Python is also the subject of current work [11]. Both approaches

address Point 2, but in complementary ways.

Further motivations appeared while I worked on the development of Connect++, and these

are some of the most central issues, both discussed further in Section 2:

1. The lean approach to ATP, exploiting the inherent strengths of Prolog, leads to beautiful,

compact implementations. However Prolog’s model of computation based on backtracking

search is not always amenable to the use of ML. (See also Point 2 above.) There are two
issues here: APIs allowing ML methods to interact with a running Prolog program are

often inadequate, and Prolog’s model of computation itself can present a barrier.

2. In particular, the Prolog cut is perfect for leanCop’s backtracking restriction [6]. However

it is a blunt instrument, and more subtle backtracking heuristics might pro�tably be

explored, in turn providing new ways for ML to control the proof search. However the

implementation of such alternatives in Prolog potentially becomes cumbersome.

While the realisation that the use of C++ supported these points was serendipitous, the overall

design of Connect++ was informed by them as described in Section 4, and they support the

overall aim of making a system that supports ML to the widest possible extent.

2I will not be claiming that Connect++ currently competes with the fastest solvers such as E [3] and Vampire [4];

the comparison is among connection solvers.
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′
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Extension
C ∪ {L},M, P

where σ(L) = σ(L′) where C′ is a copy of a clause inM,

L′ ∈ C′ and σ(L) = σ(L′)

Figure 1: Rules for constructing a clausal connection calculus proof. See Figure 3 for an example proof.

A �nal motivation for Connect++ was to explore the production of readable proofs and

proof certi�cates.

2. ML for connection calculus: why use C++?

Prolog provides compact implementations for connection provers, but to facilitate ML there are

good reasons to consider alternatives. In this section I attempt to explain my reasoning.

Connect++ implements the clausal connection calculus with lemmata and regularity, as in

Figure 1. The matrix M is the set of clauses for the problem. The path P is a set of literals, as is

the set L of lemmata. A copy of an item has a fresh set of unused variables. An overline denotes

the complement of a literal. Regularity adds the condition

∀L′ ∈ C ∪ {L} . σ(L′) /∈ σ(P)

to the Reduction and Extension rules. When applying the Reduction and Extension rules the

substitution is applied to the entire proof. In the case of Regularity and Lemmata we test for

equality using the substitution as it stands, but no further uni�cation is applied.

The rules in Figure 1 are the basis for a classical backtracking search problem. leanCop, for

example, arranges this search using Prolog’s underlying search algorithm. It is well-known that

the use of heuristics to order such a search is critical for good performance. For the calculus

described, there is ample scope for learning such heuristics; for example, at any point in the

search there may be multiple ways to extend a partially complete proof, possibly including

mutliple applicable uses of Reduction, Extension, or Lemmata rules, and we might aim to learn

a good choice of the next to try. ML algorithms therefore need to be able to in�uence such

choices, and the extent to which this is feasible will depend on the details of the implementation

of a prover. This is a particular area where we need a solver implementation facilitating �ne

control over search heuristics by external ML code.

Some of the most successful heuristics for connection provers go further, relying on the

restriction of backtracking during the proof search [6]. In the Reduction, Extension and Lemmata

rules, L is called the principal literal when the rule is selected as a candidate for extending a

proof. For the Reduction and Lemmata, L is considered solved; for an Extension it is considered

solved if the left sub-tree of the Extension is completed. After L is solved, no other options for

solving it will be considered on backtracking. This heuristic is remarkably e�ective and the

Prolog cut makes its implementation extremely convenient. However, by moving beyond the



use of cut we potentially open a wide design space of learnable backtracking heuristics. For

example, having solved a literal using Extension, should we backtrack within the left subtree

or discard it completely? Should we stop backtracking for a principal literal after it has been

solved once, or should we limit the maximum number of ways we try to solve it? Should we

limit backtracking just for this principal literal, or remove other possibilities once some literal

has been solved? There is considerable opportunity for new work here, and facilitating such

research is a key motivation for Connect++. (See Section 5 and [14], which provide some

results in this direction.)

Other successful heuristics include restriction of backtracking on start clauses, forms of

reordering and randomization [15], and others. Ideally a solver should support all forms of

heuristic, and allow ML algorithms to modify them. However we should also consider a further

potential need: to modify the operation of the proof search dynamically. Much research on

ML for ATP addresses the tuning of heuristics that are then �xed when attempting new proofs.

There is ample evidence fromwork on SAT solvers that learning on a per-proof basis is extremely

e�ective. For example, variable selection heuristics are light-weight learning algorithms adjusting

variable choice using feedback obtained while the proof search progresses. This type of learning

also deserves attention in ATP, and the need to modify heuristics during proof search is better

served by a move away from Prolog.

A �nal consideration relates to the way in which the proof search is structured. Some systems

search recursively, trying the left branches of Extensions �rst. There has been considerable

interest in applying reinforcement learning [16] and Monte-Carlo tree search [17] to connection

provers, and in these cases it makes sense to allow proofs to be constructed in a less constrained

manner. This is the subject of complementary work on representing the process as a Markov

Decision Process [11], but similar arguments apply regarding the need for a system developed

speci�cally to support ML.

3. Connect++

Connect++ supports most of the functionality provided by leanCop, and has some additional

facilities. It supports restricted backtracking, restriction of start clauses and reordering. It deals

with equality by detecting its use in the input �le and adding the necessary axioms; more sophis-

ticated approaches, such as described in [18, 19], are a subject for future extension. It assumes

negative (CNF) representation by default but can use positive (DNF) representation—this changes

the equality axioms added, and the behaviour for some of the start clause selection options. It

supports iterative deepening by path length or tree depth; switching to complete search after

a given depth; speci�ed start depth and depth increment; and can detect non-theorems if the

search is exhausted when settings are for a complete search. It accepts input in the conjunctive

normal form (CNF) format of the Thousands of Problems for Theorem Provers (TPTP) [20] library.

Support for problems in �rst-order form is a work in progress, and subsequently it does not at

present support de�nitional clausal form (DCF) [6]; this is perhaps the �rst priority for further

development as leanCop’s standard schedule employs three di�erent settings related to DCF.

A lesson learned applying ML to SAT is that solvers should avoid hiding within their imple-

mentation, parameters that are potentially important for tuning performance. Instead, such



2 limitedstart complete 7 ;

60 conjecturestart nocomplete ;

20 limitedstart restrictstart nocomplete ;

2 conjecturestart reorder 23 nocomplete ;

2 limitedstart restrictstart reorder 29 nocomplete ;

2 conjecturestart reorder 37 nocomplete ;

2 limitedstart restrictstart reorder 41 nocomplete ;

2 conjecturestart reorder 47 nocomplete ;

0 limitedstart allbacktrack nocomplete ;

Figure 2: Default schedule file for Connect++.

Axiom
{},M, [¬p,¬q(_1)], [p]

() Red
{p},M, [¬p,¬q(_1)], []

Axiom
{},M, [¬p], [¬q(_1)]

(_1 → c) Ext
{¬q(_1)},M, [¬p], []

Axiom
{},M, [¬r], [¬p]

Lem
{¬p},M, [¬r], [¬p]

Axiom
{},M, [], [¬p,¬r]

() Ext
{¬r},M, [], [¬p]

() Ext
{¬p,¬r},M, [], []

Start
ε,M, ε, ε

Figure 3: LATEX output for Example 1. Variables of the form _1, _2, . . . are fresh variables introduced by

the Start or Extension rules. Annotations to the le� of a rule, such as (_1 → c), denote substitutions
applied to the entire proof.

parameters should be exposed, preferably at the command line, so that they can be adapted to

suit a particular domain of application. Automated systems for this task, such as ParamILS [21],

SMAC [22] and GGA [23] have been used with great success, as has Bayesian optimisation [24].

Connect++ exposes a large, and growing, number of such parameters.

Some connection provers run with a hard-coded schedule optimized through experiments.

A schedule is a sequence of sets of parameter settings, each element of the sequence being

assigned a percentage of the run time. The prover might start with a schedule line stating that it

should run with full backtracking for 10% of the time, then switch to restricted backtracking for

5% of the time, then switch to a di�erent con�guration and so on. Figure 2 shows the current

default schedule used by Connect++, which is similar to that of leanCop version 2.0. The

di�erences are necessary as Connect++ does not at present implement de�nitional clausal

form. This is clearly an e�ective method, but there is evidence that learning of schedules can be

bene�cial [25]. Connect++ supports the use of arbitrary schedules and can read these from

a �le in a simple format, making it easy to incorporate the results of ML applied to schedule

choice, and potentially to support the ML process for learning schedules.

Connect++ can produce a readable proof via LATEX. Example 1 is a problem from [6].

Example 1. M = {{¬P,¬R}, {P,Q(c)}, {P,¬Q(x)}, {¬P,R}, {¬P,Q(a)}} .

Figure 3 shows the typeset output for a proof of Example 1.

Connect++ can output a simply-formatted proof certi�cate. While there is currently no

consensus on what format a certi�cate should take, suggestions have appeared [26, 8, 27] and

a proposal for a standard is given in [28]. Figure 4 shows a certi�cate for the proof shown in

Figure 3. It consists of Prolog-readable summaries of the matrix and a stack representation

of the proof (see Section 4). Each element of the stack describes the proof rule employed,



matrix(0, [ -p, -r ]).

matrix(1, [ p, q(c) ]).

matrix(2, [ p, -q(X) ]).

matrix(3, [ -p, r ]).

matrix(4, [ -p, q(a) ]).

(a) Prolog-readable representation of the matrix.

proof\_stack([

start(0),

left\_branch(2, 0, 2),

left\_branch(1, 1, 3),

reduction(0),

right\_branch(3),

right\_branch(2),

left\_branch(3, 1, 3),

lemmata(),

right\_branch(3)

]).

(b) Stack representation of the proof.

Figure 4: Certificate for the proof of Example 1.

with left_branch and right_branch denoting the left and right premises of the Extensions.

Numbers after an item identify the element(s) used in applying a rule; clauses are indexed from 0
in the matrix and literals are indexed from 0 within clauses. For example, left_branch(2, 0, 2)
denotes that there is an Extension rule with C ′ a copy of {P,¬Q(x)} and L′ = P . The third

number denotes the depth within the proof. A short Prolog program reads this certi�cate and

veri�es that the rule has been correctly applied at each stage, using the built-in uni�cation

mechanism to build the substitution.

4. Implementation: some technical details

The requirements for compiling Connect++ are light. Aside from a C++ compiler, it uses the

Boost libraries3 for parsing TPTP and schedule �les, and dealing with command-line parameters.

LATEX is needed for readable proofs and SWI Prolog [29] is needed for verifying proofs.

Connect++ exploits the structure of the connection calculus by using an optimized rep-

resentation for variables and terms. As substitutions apply to an entire proof, any variable

is only represented once, and terms using that variable do so via a pointer. Any substitution

applied to a variable therefore takes e�ect everywhere the variable appears, in constant time,

and backtracking (removing a substitution) is equally fast and straightforward. Fresh variables

are recycled where possible. Terms are constructed using pointers to subterms; subterms are

shared and no copy of an existing subterm is ever made. This is supported by an index: new

(sub)terms are added to the index and only stored of not already present; if already present then

a pointer to the existing copy is provided. Literals are straightforward identi�ers paired with a

list of pointers to terms. Clauses are lists of literals. The matrix is indexed to allow fast lookup

of which clauses contain a literal, and the position of that literal in each relevant clause. This

aids fast identi�cation of possible Extensions.

As one aim of Connect++ is to provide �exibility in the proof search, it avoids the use of

recursion in favour of an iterative approach using a pair of stacks. Figure 5 illustrates this. The

proof is built in the left stack, and as left premises of Extensions are explored �rst, the right

stack is used to store the currently outstanding right premises. Stack items store C , P and L, a

3https://www.boost.org/

https://www.boost.org/
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Figure 5: Proof search arranged around two stacks. The proof itself is built on the le�-hand stack, while

the right-hand stack maintains details of the currently outstanding right premises for Extensions.

substitution, and a list of all actions (applications of the proof rules) that can be used to further

extend the proof at this point. This structure is manipulated iteratively, and as at any point there

is direct access to the list of possible actions stored in each stack item, there is great �exibility

in directing the search—the action list in each stack item can arbitrarily be re-ordered, added

to (increasing the degree of backtracking) or reduced (restricting the degree of backtracking)

while a proof is in progress.

Planned developments to Connect++ include: (1) completion of clause translation, including

de�nitional clausal form, from TPTP �rst-order format; (2) enumeration of di�erent proofs for

a single problem as a means of generating training data; (3) implementation of the leanCop

backtracking heuristic; (4) addition of other heuristics for connection provers; (5) experiments

with new heuristics; (6) addition of further command-line options, and addition of all options

to the schedule language; (7) implementation of readable proofs similar to those produced by

leanCop version 2.1; (8) implementation of any forthcoming standard for proof certi�cates; and

(9) implementation of better approaches to equality.

5. Evaluation

To illustrate howConnect++ facilitates new experiments, we use it to provide a brief comparison

with leanCop while employing a much more aggressive backtracking restriction heuristic. Recall

that a principal literal is solved when used by a Reduction or Lemmata, or when used to start

an Extension which then leads to a solved left premis. leanCop then reduces the backtracking

employed in the proof search, at the point the rule was applied. What might happen if we

removed all possibilities at those points? This is straightforward in Connect++ as for Reduction

and Lemmata we have a pointer si to the stack item, which in turn contains a list actions of

all the ways the proof can still be extended. Thus

if (params::limit_bt_reductions)

si->actions.clear();



Figure 6: Running times for leanCop and Connect++ for the subset of AGT solved by both.

(and similarly for Lemmata) is all that is needed. Extensions are only slightly more involved:

if (params::limit_bt_extensions)

stack[si->bt_restriction_index].actions.clear();

TheAGT problems fromTPTP version 8.0.0 were converted to formats readable byConnect++

and leanCop, with equality axioms added, using tptp2X. leanCop version 2.0 was used with

ECLiPSe version 5.10 #147, and its schedule was edited to bring it closer to that for Connect++,

by removing the variations involving de�nitional clausal form. Each prover was run on all

problems using the University of Cambridge High-Performance Computing Facility.4 Of the

52 AGT problems, both systems solve the same subset, with the exception of a single problem

solved by leanCop and not by Connect++. Figure 6 shows the running times for the problems

solved by both systems. Clearly Connect++ is considerably faster in all but 1 problem. While

this is obviously not a fair or direct comparison, because we don’t know whether the di�erence

arises from the speed of the implementation or the di�erent backtracking heuristic,5 it seems at

least of note that even with a hugely aggressive backtracking restriction Connect++ solves

essentially the same problems. This also demonstrates that Connect++ can be used to support

the kind of experimentation it was developed for.
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