
A Standardized Syntax for Connection Proofs

Jens Otten1, Sean B. Holden2

1Department of Informatics, University of Oslo, Norway
2Department of Computer Science and Technology, University of Cambridge,United Kingdom

Abstract
Providing a proof certi�cate is one of the most important features of (fully automated) theorem proving

systems. For theorem provers based on, e.g, resolution or superposition calculi, a syntax for writing

solutions is well documented and used. Even though attempts have been made to specify a syntax for

connection calculi, there is currently no such syntax in common use. This paper provides an overview of

the proof syntax used by existing connection provers and proposes a standardized syntax for connection

proofs based on the TPTP language. Due to the general approach, the syntax can be extended to also

represent connection proofs in non-classical logics.

Keywords
Automated Reasoning, logic, connection calculus, connection proofs, syntax, TPTP, proof certi�cate

1. Introduction

One of the most important features of automated theorem proving (ATP) systems is the output

of a proof certi�cate, which contains a detailed description of the proof. Such a proof certi�cate

can be used to verify the output given by an ATP system. It also increases the interoperability

between ATP systems, ATP tools, and application software. Such ATP tools can, for example,

be used to represent found proofs in a more readable form.

The writing of derivations in resolution calculi using the TPTP syntax is well documented and

speci�ed [19]. For many other calculi, such as connection or sequent calculi, such a common

speci�cation does not exist. Derivations in these calculi di�er signi�cantly from derivations in

the resolution calculus. Whereas the leaves of a proof in the connection calculus consists of the

axioms of the calculus, the leaves of a derivation in the resolution calculus consists of the axiom

formulae of the given problem.

This paper proposes a syntax for connection proofs. It should not be seen as a �nal speci�ca-

tion, but as a foundation to initiate discussions within the community in order to �nalize such a

speci�cation. We start with a description of the requirements for a standardized syntax (Section

2), before presenting details of existing syntaxes for proofs, including the well-known TPTP

syntax and the syntaxes used by the connection provers leanCoP and Connect++ (Section 3).

Afterwards, we specify our proposed syntax for connection proofs (Section 4), before concluding

with a summary and outlook (Section 5).

AReCCa 2023: Automated Reasoning with Connection Calculi, 18 September 2023, Prague, Czech Republic

$ jeotten@i�.uio.no (J. Otten); sbh11@cl.cam.ac.uk (S. B. Holden)

� http://jens-otten.de/ (J. Otten); http://www.cl.cam.ac.uk/~sbh11 (S. B. Holden)

� 0000-0002-4331-8698 (J. Otten); 0000-0001-7979-1148 (S. B. Holden)
© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR

Workshop
Proceedings

http://ceur-ws.org

ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:jeotten@ifi.uio.no
mailto:sbh11@cl.cam.ac.uk
http://jens-otten.de/
http://www.cl.cam.ac.uk/~sbh11
https://orcid.org/0000-0002-4331-8698
https://orcid.org/0000-0001-7979-1148
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

2. Preliminaries

We describe requirements for a proof syntax and introduce the formal connection calculus.

2.1. Requirements for a Proof Syntax

The are certain requirement that a proof syntax should ful�ll in order be widely accepted by

the community. These are:

• Simple/lean: The syntax should be as concise and simple as possible allowing a natural

and straightforward representation of proofs. A proof syntax that is appropriate for one

calculus might not be suitable to represent proofs in another calculus.

• Human-readable: Even though one of the main purposes of a standardized proof syntax

is the interoperability between ATP systems, ATP tools and application software, a proof

in such a syntax should be readable by a human.

• Based on established formats: The proof syntax should consider the syntax of previous

proof formats, whenever these can be used in a straightforward way and do not make the

proof representation more complicated than necessary (see �rst requirement).

• Well documented and speci�ed: The proof syntax should be described in a concise and

unambiguous way.

• Extendable: The proof syntax should be kept general enough to be extendable to similar

or related proof calculi, for example for non-classical logics.

• E�ciently veri�able: It should be possible to verify the correctness of a “proof” given in

the speci�ed syntax in polynomial time.

In general, a proof of (the validity of) a �rst-order formula F is a proof of F in a (correct)

proof calculus. We will focus on the clausal connection calculus, which we will de�ne now.

2.2. The Connection Calculus

Connection calculi, including the connection method [2], the connection tableau calculus [8]

and the model elimination calculus [9], are established proof search calculi. We use the standard

language of classical �rst-order logic. A (�rst-order) formula (denoted by F) is built up from

atomic formulae, denoted by A, the connectives ¬, ∧, ∨, ⇒, and the �rst-order quanti�ers ∀
and ∃. A literal L has the form A or ¬A.

In the clausal connection calculus [2, 14] a formula is represented as a matrix. The (classical)

matrix M(F) of a formula F is its representation as a set of clauses, where each clause is a

set of literals. It is the representation of F in disjunctive normal form. Skolemization of the

Eigenvariables is done in the usual way. In the graphical representation of a matrix, its clauses

are arranged horizontally, while the literals of each clause are arranged vertically.

In contrast to sequent and tableau calculi, the proof search in connection calculi is guided

by connections. A connection is a set {A1,¬A2} of literals with the same atomic formula, but

di�erent “polarities”. A term substitution σ assigns terms to variables. A connection {A1,¬A2}
is σ-complementary i� σ(A1) = σ(A2).

Axiom (A)
{},M, Path

Start (S)
C2,M, {}

ε, M, ε
C2 is a copy ofC1∈M

Reduction (R)
C,M,Path∪{L2}

C∪{L1},M, Path∪{L2}
{L1, L2} is σ-complementary

Extension (E)
C2\{L2},M, Path∪{L1} C,M,Path

C∪{L1},M, Path

C2 is a copy of C1∈M , L2∈C2,

{L1, L2} is σ-complementary

Figure 1: The clausal connection calculus for classical logic.

The connection calculus has three main inference rules: Start, Reduction, and Extension.

These rules are shown in Figure 1; for details see [2, 8, 14, 11]. The words of the calculus are

tuples “C,M, Path”, whereM is a matrix, C is a (subgoal) clause or ε and (the active) Path is

a set of literals or ε. A copy of a clause C is made by renaming all variables in C . The rigid

term substitution σ is calculated by using one of the well-known term uni�cation algorithms

whenever a connection is identi�ed. The connection calculus is sound and complete [2].

De�nition 1 (Connection Proof). A connection proof of M is a derivation of ε,M, ε with a

term substitution σ in the connection calculus, in which all leaves are closed by axioms.

Example 1. A slightly simpli�ed version1of Pelletier’s problem 24 [17], called Pelletier 24a, consists
of the following four axioms and one conjecture formulae.2

∃x(Px ∧Rx) Conjecture {Px,Rx} (1)
¬(∃x(Sx ∧Qx)) Axiom 1 {Sy,Qy} (2)

∃xPx Axiom 3a {¬Pa} (3)
∀x(Qx ⇒ Sx) Axiom 4a {Qv,¬Sv} (4)

∀(Px ⇒ (Qx ∨Rx)) Axiom 2 {Pz,¬Qz,¬Rz} (5)

Translating this problem into clausal form (see clauses in the third column3) results in the matrix

Ma = {{Px,Rx}, {Sy,Qy}, {¬Pa}{Qv,¬Sv}, {Pz,¬Qz,¬Rz}}. The connection proof for

Ma is shown below. Its graphical matrix representation is shown in Figure 2. The proof steps are

labeled with the (new) clause number involved and the term substitution applied to it.

{},Ma, {Px}
A

{},Ma, {Rx, Pv}
A

{},Ma, {Rx,¬Qv, Sy}
A

{Qz},Ma, {Rx,¬Qv, Sy}
R

{},Ma, {Rx,¬Qv}
A

{Sy},Ma, {Rx,¬Qv}
E (4, {z\a})

{},Ma, {Rx}
A

{¬Qv},Ma, {Rx}
E (2, {y\a})

{Pv,¬Qv},Ma, {Rx}
E (3)

{},Ma, {}
A

{Rx},Ma, {}
E (5, {v\a})

{Px,Rx},Ma, {}
E (3)

ε,Ma, ε
S (1, {x\a})

1The original axioms 3 and 4 are ¬(∃xPx) ⇒ ∃yQy and ∀x((Qx ∨Rx) ⇒ Sx) , respectively.
2Axiom 2 is moved to the end of the set of axioms in order to comply with the proofs in Section 3.
3A conjecture or axiom might result in more than one clause.

Px

Rx

Sy

Qy

¬Pa Qz

¬Sz

Pv

¬Qv

¬Rv

Px

Rx

Sy

Qy

¬Pa Qz

¬Sz

Pv

¬Qv

¬Rv

(1) ↓ (2)

(3)

(4)

(6)
(5)

(7)
(1) [1, {x\a}]
(2) [3]
(3) [5, {v\a}]
(4) [3]
(5) [2, {y\a}]
(6) [4, {z\a}]
(7) (R)

Figure 2: A proof forMa using the graphical matrix representation.

3. Existing Syntaxes for Connection Proofs

We present the syntax used for the TPTP library and by the provers leanCoP and Connect++.

3.1. The TPTP Syntax

The TPTP language is suitable for representing problems as well as derivations in �rst-order

and higher-order logic [18, 19]. The top level building blocks are of the following form:

language(name,role,formula,source,useful_info).

language is, for example, fof or cnf, for �rst-order or clause normal form. Each formula has

a unique name. role is a label such as axiom or conjecture. The source describes where the

formula came from, for example an input �le, and useful_info is a list of user information. The

last two �elds are optional.

Example 2. Pelletier’s original problem 24 is in the TPTP library under the name SYN054+1. The

representation of its simpli�ed problem 24a from Example 1 in TPTP syntax is given in Figure 3.

A derivation or proof written in the TPTP language is a list of annotated formulae, as for

problems. For derivations/proofs the source has one of the forms

file(�le_name,�le_info)

inference(inference_name,inference_info,parents)

The former is used for formulae taken from the problem �le. The latter is used for inferred

formulae, in which inference_name is the name of the inference rule, inference_info is a list of

additional information about the inference, and parents is a list of the parents’ node names in

the derivation. The inference_info contains items such as variable bindings captured within

bind/2 terms.

%--

fof(pel24,conjecture, (? [X] : (big_p(X) & big_r(X)))).

fof(pel24_1,axiom, (~ (? [X] : (big_s(X) & big_q(X))))).

fof(pel24_2,axiom, (! [X] : (big_p(X) => (big_q(X) | big_r(X))))).

fof(pel24_3a,axiom, (? [X] : big_p(X))).

fof(pel24_4a,axiom, (! [X] : (big_q(X) => big_s(X)))).

%--

Figure 3: The presentation of Pelletier’s problem 24a in TPTP syntax, called SYN054a.

Table 1

The rules of the connection calculus using the connection tableau representation.

Start
✏✏✏✏✏✏

L1

✚
✚✚

L2

. . .
. . .

❩
❩❩

. . .

PPPPPP
Ln

C2={L1, . . . , Ln} and

C2 is copy of C1 ∈M

Reduction
...

. . .
L2

✏✏✏✏✏✏
L′

1

✚
✚✚

L′

2

. . .
. . .

❙
❙
L1

. . .
. . .

PPPPPP
L′

n

L2 is literal on path and

{L1, L2} is σ-complementary

Extension

✑
✑
✑
✑
✑✑

◗
◗

◗
◗

◗◗

L1

✏✏✏✏✏✏
L′

1

✚
✚✚

L′

2

. . .
. . .

❙
❙
L2

. . .
. . .

PPPPPP
L′

n

L1 is leaf, C2={L′

1, . . . , L2, . . . , L
′

n
}

and C2 is copy of C1 ∈M , L2 ∈C2,

{L1, L2} is σ-complementary

3.2. The leanCoP Syntax

According to [19], a refutation (or proof) is a derivation that has the root node false, representing

the empty clause. Whereas this description �ts proofs in resolution calculi, it is not directly

applicable to proofs in sequent, tableau or connection calculi. An attempt to “squeeze” connec-

tion proofs into this resolution-style frame [15] resulted in a syntax that does not conform to

the �rst two requirements suggested in Section 2.1: readability and simplicity. For this reason,

leanCoP [14, 11] uses a syntax, called leanTPTP, that represents connection proofs in a more

natural way, while still using main components of the TPTP syntax.

In order to shorten the output, leanCoP returns connection proofs in the connection tableau

representation [8]. The rules of the connection tableau calculus are shown in Table 1 and

correspond to the rules of the formal calculus in Figure 1. There is no explicit Axiom, which is

applied exactly once for each Start or Extension step in he formal calculus. Instead, a derivation

is a proof if each literal in a leaf is included in a σ-complementary connection {L1, L2}.

Example 3. A proof of Pelletier’s problem 24a from Example 1 using the connection tableau

representation is depicted in Figure 4. The rightmost literal in each proof step (number in parentheses)

is annotated with the used clause number and (possibly) the term substitution that is applied to the

clause. Proof step 1 is a Start step, step 7 is a Reduction step, all others are Extension steps.

✥✥✥✥✥✥✥✥✥

❵❵❵❵❵❵❵❵❵
Px Rx (1) [1, {x\a}]

˂˂˂˂˂˂˂˂˂˂˂
❈
❈
❍❍❍❍

¬Pa (2) [3] Pv ¬Qv ¬Rv (3) [5, {v\a}]

�
�
❅
❅

¬Pa (4) [3] Sy Qy (5) [2, {y\a}]

�
�
❅
❅

Qz ¬Sz (6) [4, {z\a}]

(7)

Figure 4: A proof forMa using the connection tableau representation.

%---

cnf(1, plain, [big_p(X), big_r(X)], clausify(pel24)).

cnf(2, plain, [big_s(X), big_q(X)], clausify(pel24_1)).

cnf(3, plain, [-(big_p(a))], clausify(pel24_3a)).

cnf(4, plain, [big_q(X), -(big_s(X))], clausify(pel24_4a)).

cnf(5, plain, [big_p(X), -(big_q(X)), -(big_r(X))], clausify(pel24_2)).

cnf(’1’,plain,[big_p(a),big_r(a)],start(1,bind([[X],[a]]))).

cnf(’1.1’,plain,[-(big_p(a))],extension(3)).

cnf(’1.2’,plain,[-(big_r(a)),big_p(a),-(big_q(a))],extension(5,bind([[X],[a]]))).

cnf(’1.2.1’,plain,[-(big_p(a))],extension(3)).

cnf(’1.2.2’,plain,[big_q(a),big_s(a)],extension(2,bind([[X],[a]]))).

cnf(’1.2.2.1’,plain,[-(big_s(a)),big_q(a)],extension(4,bind([[X],[a]]))).

cnf(’1.2.2.1.1’,plain,[-(big_q(a))],reduction(’1.2’)).

%---

Figure 5: A proof of Pelletier’s problem 24a using the leanTPTP syntax as returned by leanCoP 2.2.

A connection proof using the leanTPTP syntax is a list of proof steps of the form

cnf(step_name,plain,clause,rule_info).

in which step_name is the name of the proof step, clause is the used (instantiated) clause C2,

and rule_info has one of the following forms:

start(clause_number,term_substitution)

reduction(step_name)

extension(clause_number,term_substitution)

step_name is the name of the proof step and of the form ’N0.N1....Nn’, in which the Nn-th

“open” literal L1 of its parent clause ’N0.N1....Nn−1’ is used in a Reduction or Extension step;

the name of the Start step ’N0’ is ’1’. For example, ’1.2.2’ is the proof step from the second

open literal of its parent clause in the proof step named ’1.2’. step_name in Reduction steps refer

to the proof step with the clause that contains the literal L2. clause_number is the number of

the used clause in the matrix. term_substitution is of the form bind([vlist,tlist]), in which

vlist is a list of variables V1, . . . , Vn and tlist is a list of terms t1, . . . , tn, such that σ(Vi) = ti.

Example 4. The proof of Pelletier’s problem 24a from Example 1 using the leanTPTP syntax is

shown in Figure 5. It is produced by leanCoP 2.2 [14, 11] on the input �le in Figure 3 (with simpli�ed

variable names and literals L2 of Extension steps moved to the beginning of clauses).

3.3. The Connect++ Syntax

Connect++ [6] is a C++ implementation of the connection calculus shown in Figure 1. The proof

format of the Connect++ prover uses a stack to represent connection proofs. Each element on

the stack corresponds to exactly one proof step in the (formal) connection calculus, and the

stack is ordered to represent a depth-�rst search from the Start rule, exploring the left subtrees

of Extensions �rst. Clauses, and literals within clauses, are numbered from 0. The �rst element

of a proof is start(i), giving the index of the start clause used. Reductions are represented

as reduction(p) where p denotes the index of the element in the path corresponding to L2.

matrix(0, [-big_p(X), -big_r(X)]).

matrix(1, [-big_s(X), -big_q(X)]).

matrix(2, [big_p(a)]).

matrix(3, [-big_q(X), big_s(X)]).

matrix(4, [-big_p(X), big_q(X), big_r(X)]).

proof_stack([

start(0),

left_branch(2, 0, 2), right_branch(2), left_branch(4, 2, 3),

left_branch(2, 0, 4), right_branch(4), left_branch(3, 0, 5),

left_branch(1, 0, 6), reduction(1), right_branch(6),

right_branch(5), right_branch(3)

]).

Figure 6: A proof of Pelletier’s problem 24a using the syntax as returned by Connect++.

Extensions are represented by left_branch(i, j, d) and right_branch(d) with i the index

of C2, j the index of L2 and d the proof tree depth.

Example 5. The proof of Pelletier’s problem 24a from Example 1 using the Connect++ syntax is

shown in Figure 6.4 In this proof, start(0) denotes that clause 0 is used by the Start rule, and

left_branch(2,0,2) denotes that the �rst extension uses clause 2 and literal 0 within that

clause, and is at depth 2 in the tree, and so on.

Connect++ includes a proof checker. It is a short piece of Prolog code and uses Prolog’s

resolution mechanism to build the substitution. However, it is straightforward to extend

Connect++’s syntax to specify explicitly the substitution of the returned connection proof.

4. A Proposed Syntax for Connection Proofs

We propose the following syntax, which follows more closely the TPTP format described in

Section 3.1 and generalizes the leanTPTP format presented in Section 3.2 with the following

modi�cations:

• include information about the parent node, which allows the use of arbitrary proof step

names in the �rst argument,

• add a list containing the elements of the active path,

• use the inference expression to specify clause number, substitutions and active path.

A connection proof using our proposed syntax is a list of proof steps of the form

cnf(name,plain, formula,inference(rule_name,rule_info),parent).

in which name is the name of the proof step, formula is the used (instantiated) clause C2 or a

list containing L2 of the Reduction step, rule_name is one of start, reduction, extension

or any other used inference name (for example lemma), and parent is a list containing the name

4Note that the prover produces a slightly di�erent proof of the problem by way of a di�erent choice of C2 in the

third extension. Also, literals are negated throughout the matrix as Connect++ works in the negative (conjunctive

normal form) representation, starting with the negation of the stated problem.

%---

cnf(1, plain, [big_p(X), big_r(X)], clausify(pel24)).

cnf(2, plain, [big_s(X), big_q(X)], clausify(pel24_1)).

cnf(3, plain, [-(big_p(a))], clausify(pel24_3a)).

cnf(4, plain, [big_q(X), -(big_s(X))], clausify(pel24_4a)).

cnf(5, plain, [big_p(X), -(big_q(X)), -(big_r(X))], clausify(pel24_2)).

cnf(1,plain,[big_p(a),big_r(a)],inference(start,[1,bind([X],[a]),path([])]),[]).

cnf(2,plain,[-(big_p(a))],inference(extension,[3,path([big_p(a)])]),[1]).

cnf(3,plain,[-(big_r(a)),big_p(a),-(big_q(a))],

inference(extension,[5,bind([[X],[a]]),path([big_r(a)])]),[1]).

cnf(4,plain,[-(big_p(a))],inference(extension,[3,path([big_r(a),big_p(a)])]),[3]).

cnf(5,plain,[big_q(a),big_s(a)],

inference(extension,[2,bind([[X],[a]]),path([big_r(a),-(big_q(a))])]),[3]).

cnf(6,plain,[-(big_s(a)),big_q(a)],

inference(extension,[4,bind([[X],[a]]),path([big_r(a),-big_q(a)),big_s(a)])]),[5]).

cnf(7,plain,[-(big_q(a))],inference(reduction,[3,path([big_r(a),-(big_q(a)),big_s(a)])]),[6]).

%---

Figure 7: A proof of Pelletier’s problem 24a using the proposed syntax.

of the previous (parent) proof step; �nally, rule_info is a list of the form

[clause_name,bind([vlist,tlist]),path(plist)]

in which clause_name is the name of the used clause, vlist is a list of variables V1, . . . , Vn and

tlist is a list of terms t1, . . . , tn, such that σ(Vi) = ti; plist is the list of literals in the active path.

Example 6. The proof of Pelletier’s problem 24a from Example 1 using the proposed syntax is

shown in Figure 7.

5. Conclusion

In this paper, we described the syntax of the connection proofs returned by two existing

connection provers for classical �rst-order logic, and proposed a syntax for a proof format that

ful�ls the requirements listed in Section 2.1. As mentioned in the introduction, it should not be

seen as a �nal speci�cation, but as a foundation to initiate discussions within the community in

order to �nalize such a speci�cation taking further proof formats [7, 4] into account.

A common standard for presentation of derivations and proofs will increase the interoperabil-

ity between ATP systems, ATP tools, and application software. For example, Connect++ includes

a tool to translate connection proofs into a LaTeX output of the formal calculus. A standardized

syntax would make it possible to use this tool in combination with other connection provers.

Such a standard would also allow the development of tools to translate connection proofs into

sequent proofs [5], which are often used in interactive proof editors, such as Coq [1], NuPRL [3]

or PVS [16]. To this end, a standardized syntax for sequent proofs would be desirable as well.

A possible extension of the current work includes the speci�cation of a syntax to represent

non-clausal connection proofs [12] or connection proofs in non-classical logics [10, 13]. These

extensions should be kept in mind already when developing a format for clausal connection

proofs in classical logics. For example, the connection calculi for intuitionistic and modal logic

use an additional pre�x substitution, which could be just added to each proof step.

References

[1] Y. Bertot and P. Casteran. Interactive Theorem Proving and Program Development - Coq’Art.

Texts in Theoretical Computer Science. Springer-Verlag, 2004.

[2] W. Bibel. Automated Theorem Proving. Vieweg and Sohn, 1987.

[3] R. Constable, et al. Implementing Mathematics with the Nuprl Proof Development System.

Prentice-Hall, 1986.

[4] M. Färber, C. Kaliszyk, and J. Urban. Machine Learning Guidance and Proof Certi�cation

for Connection Tableaux. arXiv:1805.03107v3 [cs.LO], 2018.

[5] G. Gentzen. Untersuchungen über das logische Schließen. Mathematische Zeitschrift,

36:176–210, 405–431, 1935.

[6] S. B. Holden. Connect++: a fast, �exible and modi�able connection prover to support

machine learning. In: J. Otten and W. Bibel, editors, Proceedings of the Workshop on

Automated Reasoning with Connection Calculi (AReCCa), 2023.

[7] C. Kaliszyk, J. Urban, and J. Vyskočil. Certi�ed Connection Tableaux Proofs for HOL Light

and TPTP. In Certi�ed Programs and Proofs (CPP), pages 59–66, ACM, 2015.

[8] R. Letz and G. Stenz. Model Elimination and Connection Tableau Procedures. In A. Robin-

son and A. Voronkov, editors, Handbook of Automated Reasoning, pages 2015–2114. Elsevier

Science, 2001.

[9] D.W. Loveland. Mechanical Theorem Proving by Model Elimination. Journal of the ACM,

15(2):236–251, 1968.

[10] J. Otten. Clausal Connection-Based Theorem Proving in Intuitionistic First-Order Logic.

In B. Beckert, editor, TABLEAUX 2005, LNAI, volume 3702, pages 245–261. Springer, 2005.

[11] J. Otten. Restricting Backtracking in Connection Calculi. AI Communications, 23(2-3):159–

182, 2010.

[12] J. Otten. A Non-clausal Connection Calculus. In K. Brünnler, G. Metcalfe, editors,

TABLEAUX 2011, LNAI, volume 6793, pages 226–241. Springer, 2011.

[13] J. Otten.MleanCoP: A Connection Prover for First-OrderModal Logic. In S. Demri, D. Kapur,

C. Weidenbach, editors, IJCAR 2014, LNAI, volume 8562, pages 269–276. Springer, 2014.

[14] J. Otten and W. Bibel. leanCoP: Lean Connection-Based Theorem Proving. Journal of

Symbolic Computation, 36(1-2):139–161, 2003.

[15] J. Otten and G. Sutcli�e. Using the TPTP Language for Representing Derivations in

Tableau and Connection Calculi. In B. Konev, R.A. Schmidt, S.]Schulz, editors, PAAR 2010,

EPiC, volume 9, pages 95–105. EasyChair, 2010.

[16] S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M. Srivas. PVS: Combining Speci�cation,

Proof Checking, and Model Checking. In R. Alur and T.A. Henzinger, editors, Computer-

Aided Veri�cation, LNCS, volume 1102, pages 411–414. Springer, 1996.

[17] F.J. Pelletier. Seventy-�ve Problems for Testing Automatic Theorem Provers. Journal of

Automated Reasoning, 2(2):191–216, 1986.

[18] G. Sutcli�e. The TPTP problem library and associated infrastructure. Journal of Automated

Reasoning, 59(4):483–502, 2017.

[19] G. Sutcli�e, S. Schulz, K. Claessen, and A. Van Gelder. Using the TPTP Language for

Writing Derivations and Finite Interpretations. In U. Furbach and N. Shankar, editors,

IJCAR 2006, LNAI, volume 4130, pages 67–81. Springer, 2006.

	1 Introduction
	2 Preliminaries
	2.1 Requirements for a Proof Syntax
	2.2 The Connection Calculus

	3 Existing Syntaxes for Connection Proofs
	3.1 The TPTP Syntax
	3.2 The leanCoP Syntax
	3.3 The Connect++ Syntax

	4 A Proposed Syntax for Connection Proofs
	5 Conclusion

